Add mkldnn int8 mul-op kernel (#17834)
	
		
	
				
					
				
			
							parent
							
								
									ac81c81be1
								
							
						
					
					
						commit
						0caa08ea40
					
				
											
												
													File diff suppressed because it is too large
													Load Diff
												
											
										
									
								| @ -0,0 +1,166 @@ | |||||||
|  | # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. | ||||||
|  | # | ||||||
|  | # Licensed under the Apache License, Version 2.0 (the "License"); | ||||||
|  | # you may not use this file except in compliance with the License. | ||||||
|  | # You may obtain a copy of the License at | ||||||
|  | # | ||||||
|  | #     http://www.apache.org/licenses/LICENSE-2.0 | ||||||
|  | # | ||||||
|  | # Unless required by applicable law or agreed to in writing, software | ||||||
|  | # distributed under the License is distributed on an "AS IS" BASIS, | ||||||
|  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||||
|  | # See the License for the specific language governing permissions and | ||||||
|  | # limitations under the License. | ||||||
|  | 
 | ||||||
|  | from __future__ import print_function | ||||||
|  | 
 | ||||||
|  | import unittest | ||||||
|  | import numpy as np | ||||||
|  | import paddle.fluid.core as core | ||||||
|  | from paddle.fluid.tests.unittests.op_test import OpTest | ||||||
|  | ''' | ||||||
|  |  test case for s8 * s8 | ||||||
|  | ''' | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class TestMKLDNNMulOpS8S8(OpTest): | ||||||
|  |     def setUp(self): | ||||||
|  |         self.op_type = "mul" | ||||||
|  |         self.init_kernel_type() | ||||||
|  |         self.init_data_type() | ||||||
|  |         self.init_data() | ||||||
|  |         self.attrs = { | ||||||
|  |             "use_mkldnn": self.use_mkldnn, | ||||||
|  |             "scale_x": self.scale_x, | ||||||
|  |             "scale_y": self.scale_y, | ||||||
|  |             "scale_out": self.scale_out, | ||||||
|  |             "force_fp32_output": self.force_fp32, | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  |     def init_kernel_type(self): | ||||||
|  |         self.use_mkldnn = True | ||||||
|  |         self.force_fp32 = True | ||||||
|  | 
 | ||||||
|  |     def init_data_type(self): | ||||||
|  |         self.srctype = np.uint8 | ||||||
|  |         self.dsttype = np.float32 if self.force_fp32 else np.int8 | ||||||
|  | 
 | ||||||
|  |     def init_data(self): | ||||||
|  |         self.scale_x = 0.6 | ||||||
|  |         self.scale_y = [0.8] | ||||||
|  |         self.scale_out = 1.0 | ||||||
|  | 
 | ||||||
|  |         # limit random range inside |-127, 127| to avoid overflow on SKL | ||||||
|  |         if self.srctype == np.int8: | ||||||
|  |             A_data = np.random.randint(-127, 127, (2, 5)).astype(np.int8) | ||||||
|  |         else: | ||||||
|  |             A_data = np.random.randint(0, 127, (2, 5)).astype(np.uint8) | ||||||
|  | 
 | ||||||
|  |         B_data = np.random.uniform(-127, 127, (5, 3)).astype(np.float32) | ||||||
|  | 
 | ||||||
|  |         quant_B = np.round(B_data * self.scale_y[0]).astype(np.int) | ||||||
|  |         output = np.dot(A_data, quant_B) | ||||||
|  | 
 | ||||||
|  |         scale_output_shift = (self.scale_out) / \ | ||||||
|  |             (self.scale_x * self.scale_y[0]) | ||||||
|  | 
 | ||||||
|  |         if (self.force_fp32): | ||||||
|  |             output = (output * scale_output_shift).astype(self.dsttype) | ||||||
|  |         else: | ||||||
|  |             output = np.round(output * scale_output_shift).astype(self.dsttype) | ||||||
|  | 
 | ||||||
|  |         self.inputs = {'X': A_data, 'Y': B_data} | ||||||
|  |         self.outputs = {'Out': output} | ||||||
|  | 
 | ||||||
|  |     def test_check_output(self): | ||||||
|  |         self.check_output_with_place(core.CPUPlace(), atol=0) | ||||||
|  | 
 | ||||||
|  |     def test_check_grad_normal(self): | ||||||
|  |         pass | ||||||
|  | 
 | ||||||
|  |     def test_check_grad_ingore_x(self): | ||||||
|  |         pass | ||||||
|  | 
 | ||||||
|  |     def test_check_grad_ingore_y(self): | ||||||
|  |         pass | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | ''' | ||||||
|  |  test case for  s8 * u8  | ||||||
|  | ''' | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class TestMKLDNNMulOpS8U8(TestMKLDNNMulOpS8S8): | ||||||
|  |     def init_data_type(self): | ||||||
|  |         self.srctype = np.uint8 | ||||||
|  |         self.dsttype = np.float32 if self.force_fp32 else np.int8 | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | ''' | ||||||
|  |  test case for  s8 * s8  | ||||||
|  | ''' | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class TestMKLDNNMulOpS8S8WithFlatten(TestMKLDNNMulOpS8S8): | ||||||
|  |     def setUp(self): | ||||||
|  |         self.op_type = "mul" | ||||||
|  |         self.init_kernel_type() | ||||||
|  |         self.init_data_type() | ||||||
|  |         self.init_data() | ||||||
|  |         self.attrs = { | ||||||
|  |             "use_mkldnn": self.use_mkldnn, | ||||||
|  |             "scale_x": self.scale_x, | ||||||
|  |             "scale_y": self.scale_y, | ||||||
|  |             "scale_out": self.scale_out, | ||||||
|  |             "force_fp32_output": self.force_fp32, | ||||||
|  |             "x_num_col_dims": 2, | ||||||
|  |             "y_num_col_dims": 2, | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  |     def init_data(self): | ||||||
|  |         self.scale_x = 0.6 | ||||||
|  |         self.scale_y = [0.8] | ||||||
|  |         self.scale_out = 1.0 | ||||||
|  | 
 | ||||||
|  |         # limit random range inside |-127, 127| to avoid overflow on SKL | ||||||
|  |         if self.srctype == np.int8: | ||||||
|  |             A_data = np.random.randint(-127, 127, (3, 4, 4, 3)).astype(np.int8) | ||||||
|  |         else: | ||||||
|  |             A_data = np.random.randint(0, 127, (3, 4, 4, 3)).astype(np.uint8) | ||||||
|  | 
 | ||||||
|  |         B_data = np.random.uniform(-127, 127, | ||||||
|  |                                    (2, 6, 1, 2, 3)).astype(np.float32) | ||||||
|  | 
 | ||||||
|  |         A_data_reshape = A_data.reshape(3 * 4, 4 * 3) | ||||||
|  |         B_data_reshape = B_data.reshape(2 * 6, 1 * 2 * 3) | ||||||
|  | 
 | ||||||
|  |         quant_B = np.round(B_data_reshape * self.scale_y[0]).astype(np.int) | ||||||
|  |         output = np.dot(A_data_reshape, quant_B) | ||||||
|  | 
 | ||||||
|  |         scale_output_shift = (self.scale_out) / \ | ||||||
|  |             (self.scale_x * self.scale_y[0]) | ||||||
|  | 
 | ||||||
|  |         if (self.force_fp32): | ||||||
|  |             output = (output * scale_output_shift).astype(self.dsttype) | ||||||
|  |         else: | ||||||
|  |             output = np.round(output * scale_output_shift).astype(self.dsttype) | ||||||
|  | 
 | ||||||
|  |         output = output.reshape(3, 4, 1, 2, 3) | ||||||
|  | 
 | ||||||
|  |         self.inputs = {'X': A_data, 'Y': B_data} | ||||||
|  |         self.outputs = {'Out': output} | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | ''' | ||||||
|  |  test case for  s8 * u8  | ||||||
|  | ''' | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class TestMKLDNNMulOpS8U8WithFlatten(TestMKLDNNMulOpS8S8WithFlatten): | ||||||
|  |     def init_data_type(self): | ||||||
|  |         self.srctype = np.uint8 | ||||||
|  |         self.dsttype = np.float32 if self.force_fp32 else np.int8 | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | if __name__ == '__main__': | ||||||
|  |     unittest.main() | ||||||
					Loading…
					
					
				
		Reference in new issue