Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into add_tensorrt_pooling_converter
commit
0dcbeda2e6
@ -0,0 +1,138 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle.fluid as fluid
|
||||
import numpy
|
||||
import sys
|
||||
|
||||
TRAIN_FILES = ['train.recordio']
|
||||
TEST_FILES = ['test.recordio']
|
||||
|
||||
DICT_DIM = 5147
|
||||
|
||||
# embedding dim
|
||||
emb_dim = 128
|
||||
|
||||
# hidden dim
|
||||
hid_dim = 128
|
||||
|
||||
# class num
|
||||
class_dim = 2
|
||||
|
||||
# epoch num
|
||||
epoch_num = 10
|
||||
|
||||
|
||||
def build_program(is_train):
|
||||
file_obj_handle = fluid.layers.io.open_files(
|
||||
filenames=TRAIN_FILES if is_train else TEST_FILES,
|
||||
shapes=[[-1, 1], [-1, 1]],
|
||||
lod_levels=[1, 0],
|
||||
dtypes=['int64', 'int64'])
|
||||
|
||||
file_obj = fluid.layers.io.double_buffer(file_obj_handle)
|
||||
|
||||
with fluid.unique_name.guard():
|
||||
|
||||
data, label = fluid.layers.read_file(file_obj)
|
||||
|
||||
emb = fluid.layers.embedding(input=data, size=[DICT_DIM, emb_dim])
|
||||
|
||||
conv_3 = fluid.nets.sequence_conv_pool(
|
||||
input=emb,
|
||||
num_filters=hid_dim,
|
||||
filter_size=3,
|
||||
act="tanh",
|
||||
pool_type="sqrt")
|
||||
|
||||
conv_4 = fluid.nets.sequence_conv_pool(
|
||||
input=emb,
|
||||
num_filters=hid_dim,
|
||||
filter_size=4,
|
||||
act="tanh",
|
||||
pool_type="sqrt")
|
||||
|
||||
prediction = fluid.layers.fc(input=[conv_3, conv_4],
|
||||
size=class_dim,
|
||||
act="softmax")
|
||||
|
||||
# cross entropy loss
|
||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
|
||||
# mean loss
|
||||
avg_cost = fluid.layers.mean(x=cost)
|
||||
acc = fluid.layers.accuracy(input=prediction, label=label)
|
||||
|
||||
if is_train:
|
||||
# SGD optimizer
|
||||
sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.001)
|
||||
sgd_optimizer.minimize(avg_cost)
|
||||
|
||||
return {'loss': avg_cost, 'log': [avg_cost, acc], 'file': file_obj_handle}
|
||||
|
||||
|
||||
def main():
|
||||
train = fluid.Program()
|
||||
startup = fluid.Program()
|
||||
test = fluid.Program()
|
||||
|
||||
with fluid.program_guard(train, startup):
|
||||
train_args = build_program(is_train=True)
|
||||
|
||||
with fluid.program_guard(test, startup):
|
||||
test_args = build_program(is_train=False)
|
||||
|
||||
use_cuda = fluid.core.is_compiled_with_cuda()
|
||||
# startup
|
||||
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
||||
exe = fluid.Executor(place=place)
|
||||
exe.run(startup)
|
||||
|
||||
train_exe = fluid.ParallelExecutor(
|
||||
use_cuda=use_cuda,
|
||||
loss_name=train_args['loss'].name,
|
||||
main_program=train)
|
||||
test_exe = fluid.ParallelExecutor(
|
||||
use_cuda=use_cuda, main_program=test, share_vars_from=train_exe)
|
||||
|
||||
fetch_var_list = [var.name for var in train_args['log']]
|
||||
for epoch_id in range(epoch_num):
|
||||
# train
|
||||
try:
|
||||
batch_id = 0
|
||||
while True:
|
||||
loss, acc = map(numpy.array,
|
||||
train_exe.run(fetch_list=fetch_var_list))
|
||||
print 'Train epoch', epoch_id, 'batch', batch_id, 'loss:', loss, 'acc:', acc
|
||||
batch_id += 1
|
||||
except fluid.core.EOFException:
|
||||
print 'End of epoch', epoch_id
|
||||
train_args['file'].reset()
|
||||
|
||||
# test
|
||||
loss = []
|
||||
acc = []
|
||||
try:
|
||||
while True:
|
||||
loss_np, acc_np = map(numpy.array,
|
||||
test_exe.run(fetch_list=fetch_var_list))
|
||||
loss.append(loss_np[0])
|
||||
acc.append(acc_np[0])
|
||||
except:
|
||||
test_args['file'].reset()
|
||||
print 'Test loss:', numpy.mean(loss), 'acc:', numpy.mean(acc)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -1,146 +0,0 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle.fluid as fluid
|
||||
import numpy
|
||||
import sys
|
||||
|
||||
TRAIN_FILES = ['train.recordio']
|
||||
TEST_FILES = ['test.recordio']
|
||||
|
||||
DICT_DIM = 89528
|
||||
|
||||
# embedding dim
|
||||
emb_dim = 128
|
||||
|
||||
# hidden dim
|
||||
hid_dim = 128
|
||||
|
||||
# hidden dim2
|
||||
hid_dim2 = 96
|
||||
|
||||
# class num
|
||||
class_dim = 2
|
||||
|
||||
|
||||
def network_cfg(is_train, pass_num=100):
|
||||
with fluid.unique_name.guard():
|
||||
train_file_obj = fluid.layers.open_files(
|
||||
filenames=TRAIN_FILES,
|
||||
pass_num=pass_num,
|
||||
shapes=[[-1, 1], [-1, 1]],
|
||||
lod_levels=[1, 0],
|
||||
dtypes=['int64', 'int64'])
|
||||
|
||||
test_file_obj = fluid.layers.open_files(
|
||||
filenames=TEST_FILES,
|
||||
pass_num=1,
|
||||
shapes=[[-1, 1], [-1, 1]],
|
||||
lod_levels=[1, 0],
|
||||
dtypes=['int64', 'int64'])
|
||||
|
||||
if is_train:
|
||||
file_obj = fluid.layers.shuffle(train_file_obj, buffer_size=1000)
|
||||
else:
|
||||
file_obj = test_file_obj
|
||||
|
||||
file_obj = fluid.layers.double_buffer(
|
||||
file_obj,
|
||||
name="train_double_buffer" if is_train else 'test_double_buffer')
|
||||
|
||||
data, label = fluid.layers.read_file(file_obj)
|
||||
|
||||
emb = fluid.layers.embedding(input=data, size=[DICT_DIM, emb_dim])
|
||||
|
||||
# sequence conv with window size = 3
|
||||
win_size = 3
|
||||
conv_3 = fluid.nets.sequence_conv_pool(
|
||||
input=emb,
|
||||
num_filters=hid_dim,
|
||||
filter_size=win_size,
|
||||
act="tanh",
|
||||
pool_type="max")
|
||||
|
||||
# fc layer after conv
|
||||
fc_1 = fluid.layers.fc(input=[conv_3], size=hid_dim2)
|
||||
|
||||
# probability of each class
|
||||
prediction = fluid.layers.fc(input=[fc_1],
|
||||
size=class_dim,
|
||||
act="softmax")
|
||||
# cross entropy loss
|
||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
|
||||
# mean loss
|
||||
avg_cost = fluid.layers.mean(x=cost)
|
||||
acc = fluid.layers.accuracy(input=prediction, label=label)
|
||||
|
||||
if is_train:
|
||||
# SGD optimizer
|
||||
sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.01)
|
||||
sgd_optimizer.minimize(avg_cost)
|
||||
|
||||
return {
|
||||
'loss': avg_cost,
|
||||
'log': [avg_cost, acc],
|
||||
'file': train_file_obj if is_train else test_file_obj
|
||||
}
|
||||
|
||||
|
||||
def main():
|
||||
train = fluid.Program()
|
||||
startup = fluid.Program()
|
||||
|
||||
with fluid.program_guard(train, startup):
|
||||
train_args = network_cfg(is_train=True)
|
||||
|
||||
test = fluid.Program()
|
||||
|
||||
with fluid.program_guard(test, fluid.Program()):
|
||||
test_args = network_cfg(is_train=False)
|
||||
|
||||
# startup
|
||||
place = fluid.CUDAPlace(0)
|
||||
exe = fluid.Executor(place=place)
|
||||
exe.run(startup)
|
||||
|
||||
train_exe = fluid.ParallelExecutor(
|
||||
use_cuda=True, loss_name=train_args['loss'].name, main_program=train)
|
||||
|
||||
fetch_var_list = [var.name for var in train_args['log']]
|
||||
for i in xrange(sys.maxint):
|
||||
result = map(numpy.array,
|
||||
train_exe.run(fetch_list=fetch_var_list
|
||||
if i % 1000 == 0 else []))
|
||||
if len(result) != 0:
|
||||
print 'Train: ', result
|
||||
|
||||
if i % 1000 == 0:
|
||||
test_exe = fluid.ParallelExecutor(
|
||||
use_cuda=True, main_program=test, share_vars_from=train_exe)
|
||||
loss = []
|
||||
acc = []
|
||||
try:
|
||||
while True:
|
||||
loss_np, acc_np = map(
|
||||
numpy.array, test_exe.run(fetch_list=fetch_var_list))
|
||||
loss.append(loss_np[0])
|
||||
acc.append(acc_np[0])
|
||||
except:
|
||||
test_args['file'].reset()
|
||||
print 'TEST: ', numpy.mean(loss), numpy.mean(acc)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in new issue