Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into add_tensorrt_pooling_converter
commit
0dcbeda2e6
@ -0,0 +1,138 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
import numpy
|
||||||
|
import sys
|
||||||
|
|
||||||
|
TRAIN_FILES = ['train.recordio']
|
||||||
|
TEST_FILES = ['test.recordio']
|
||||||
|
|
||||||
|
DICT_DIM = 5147
|
||||||
|
|
||||||
|
# embedding dim
|
||||||
|
emb_dim = 128
|
||||||
|
|
||||||
|
# hidden dim
|
||||||
|
hid_dim = 128
|
||||||
|
|
||||||
|
# class num
|
||||||
|
class_dim = 2
|
||||||
|
|
||||||
|
# epoch num
|
||||||
|
epoch_num = 10
|
||||||
|
|
||||||
|
|
||||||
|
def build_program(is_train):
|
||||||
|
file_obj_handle = fluid.layers.io.open_files(
|
||||||
|
filenames=TRAIN_FILES if is_train else TEST_FILES,
|
||||||
|
shapes=[[-1, 1], [-1, 1]],
|
||||||
|
lod_levels=[1, 0],
|
||||||
|
dtypes=['int64', 'int64'])
|
||||||
|
|
||||||
|
file_obj = fluid.layers.io.double_buffer(file_obj_handle)
|
||||||
|
|
||||||
|
with fluid.unique_name.guard():
|
||||||
|
|
||||||
|
data, label = fluid.layers.read_file(file_obj)
|
||||||
|
|
||||||
|
emb = fluid.layers.embedding(input=data, size=[DICT_DIM, emb_dim])
|
||||||
|
|
||||||
|
conv_3 = fluid.nets.sequence_conv_pool(
|
||||||
|
input=emb,
|
||||||
|
num_filters=hid_dim,
|
||||||
|
filter_size=3,
|
||||||
|
act="tanh",
|
||||||
|
pool_type="sqrt")
|
||||||
|
|
||||||
|
conv_4 = fluid.nets.sequence_conv_pool(
|
||||||
|
input=emb,
|
||||||
|
num_filters=hid_dim,
|
||||||
|
filter_size=4,
|
||||||
|
act="tanh",
|
||||||
|
pool_type="sqrt")
|
||||||
|
|
||||||
|
prediction = fluid.layers.fc(input=[conv_3, conv_4],
|
||||||
|
size=class_dim,
|
||||||
|
act="softmax")
|
||||||
|
|
||||||
|
# cross entropy loss
|
||||||
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||||
|
|
||||||
|
# mean loss
|
||||||
|
avg_cost = fluid.layers.mean(x=cost)
|
||||||
|
acc = fluid.layers.accuracy(input=prediction, label=label)
|
||||||
|
|
||||||
|
if is_train:
|
||||||
|
# SGD optimizer
|
||||||
|
sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.001)
|
||||||
|
sgd_optimizer.minimize(avg_cost)
|
||||||
|
|
||||||
|
return {'loss': avg_cost, 'log': [avg_cost, acc], 'file': file_obj_handle}
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
train = fluid.Program()
|
||||||
|
startup = fluid.Program()
|
||||||
|
test = fluid.Program()
|
||||||
|
|
||||||
|
with fluid.program_guard(train, startup):
|
||||||
|
train_args = build_program(is_train=True)
|
||||||
|
|
||||||
|
with fluid.program_guard(test, startup):
|
||||||
|
test_args = build_program(is_train=False)
|
||||||
|
|
||||||
|
use_cuda = fluid.core.is_compiled_with_cuda()
|
||||||
|
# startup
|
||||||
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place=place)
|
||||||
|
exe.run(startup)
|
||||||
|
|
||||||
|
train_exe = fluid.ParallelExecutor(
|
||||||
|
use_cuda=use_cuda,
|
||||||
|
loss_name=train_args['loss'].name,
|
||||||
|
main_program=train)
|
||||||
|
test_exe = fluid.ParallelExecutor(
|
||||||
|
use_cuda=use_cuda, main_program=test, share_vars_from=train_exe)
|
||||||
|
|
||||||
|
fetch_var_list = [var.name for var in train_args['log']]
|
||||||
|
for epoch_id in range(epoch_num):
|
||||||
|
# train
|
||||||
|
try:
|
||||||
|
batch_id = 0
|
||||||
|
while True:
|
||||||
|
loss, acc = map(numpy.array,
|
||||||
|
train_exe.run(fetch_list=fetch_var_list))
|
||||||
|
print 'Train epoch', epoch_id, 'batch', batch_id, 'loss:', loss, 'acc:', acc
|
||||||
|
batch_id += 1
|
||||||
|
except fluid.core.EOFException:
|
||||||
|
print 'End of epoch', epoch_id
|
||||||
|
train_args['file'].reset()
|
||||||
|
|
||||||
|
# test
|
||||||
|
loss = []
|
||||||
|
acc = []
|
||||||
|
try:
|
||||||
|
while True:
|
||||||
|
loss_np, acc_np = map(numpy.array,
|
||||||
|
test_exe.run(fetch_list=fetch_var_list))
|
||||||
|
loss.append(loss_np[0])
|
||||||
|
acc.append(acc_np[0])
|
||||||
|
except:
|
||||||
|
test_args['file'].reset()
|
||||||
|
print 'Test loss:', numpy.mean(loss), 'acc:', numpy.mean(acc)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
@ -1,146 +0,0 @@
|
|||||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
import paddle.fluid as fluid
|
|
||||||
import numpy
|
|
||||||
import sys
|
|
||||||
|
|
||||||
TRAIN_FILES = ['train.recordio']
|
|
||||||
TEST_FILES = ['test.recordio']
|
|
||||||
|
|
||||||
DICT_DIM = 89528
|
|
||||||
|
|
||||||
# embedding dim
|
|
||||||
emb_dim = 128
|
|
||||||
|
|
||||||
# hidden dim
|
|
||||||
hid_dim = 128
|
|
||||||
|
|
||||||
# hidden dim2
|
|
||||||
hid_dim2 = 96
|
|
||||||
|
|
||||||
# class num
|
|
||||||
class_dim = 2
|
|
||||||
|
|
||||||
|
|
||||||
def network_cfg(is_train, pass_num=100):
|
|
||||||
with fluid.unique_name.guard():
|
|
||||||
train_file_obj = fluid.layers.open_files(
|
|
||||||
filenames=TRAIN_FILES,
|
|
||||||
pass_num=pass_num,
|
|
||||||
shapes=[[-1, 1], [-1, 1]],
|
|
||||||
lod_levels=[1, 0],
|
|
||||||
dtypes=['int64', 'int64'])
|
|
||||||
|
|
||||||
test_file_obj = fluid.layers.open_files(
|
|
||||||
filenames=TEST_FILES,
|
|
||||||
pass_num=1,
|
|
||||||
shapes=[[-1, 1], [-1, 1]],
|
|
||||||
lod_levels=[1, 0],
|
|
||||||
dtypes=['int64', 'int64'])
|
|
||||||
|
|
||||||
if is_train:
|
|
||||||
file_obj = fluid.layers.shuffle(train_file_obj, buffer_size=1000)
|
|
||||||
else:
|
|
||||||
file_obj = test_file_obj
|
|
||||||
|
|
||||||
file_obj = fluid.layers.double_buffer(
|
|
||||||
file_obj,
|
|
||||||
name="train_double_buffer" if is_train else 'test_double_buffer')
|
|
||||||
|
|
||||||
data, label = fluid.layers.read_file(file_obj)
|
|
||||||
|
|
||||||
emb = fluid.layers.embedding(input=data, size=[DICT_DIM, emb_dim])
|
|
||||||
|
|
||||||
# sequence conv with window size = 3
|
|
||||||
win_size = 3
|
|
||||||
conv_3 = fluid.nets.sequence_conv_pool(
|
|
||||||
input=emb,
|
|
||||||
num_filters=hid_dim,
|
|
||||||
filter_size=win_size,
|
|
||||||
act="tanh",
|
|
||||||
pool_type="max")
|
|
||||||
|
|
||||||
# fc layer after conv
|
|
||||||
fc_1 = fluid.layers.fc(input=[conv_3], size=hid_dim2)
|
|
||||||
|
|
||||||
# probability of each class
|
|
||||||
prediction = fluid.layers.fc(input=[fc_1],
|
|
||||||
size=class_dim,
|
|
||||||
act="softmax")
|
|
||||||
# cross entropy loss
|
|
||||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
||||||
|
|
||||||
# mean loss
|
|
||||||
avg_cost = fluid.layers.mean(x=cost)
|
|
||||||
acc = fluid.layers.accuracy(input=prediction, label=label)
|
|
||||||
|
|
||||||
if is_train:
|
|
||||||
# SGD optimizer
|
|
||||||
sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.01)
|
|
||||||
sgd_optimizer.minimize(avg_cost)
|
|
||||||
|
|
||||||
return {
|
|
||||||
'loss': avg_cost,
|
|
||||||
'log': [avg_cost, acc],
|
|
||||||
'file': train_file_obj if is_train else test_file_obj
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
train = fluid.Program()
|
|
||||||
startup = fluid.Program()
|
|
||||||
|
|
||||||
with fluid.program_guard(train, startup):
|
|
||||||
train_args = network_cfg(is_train=True)
|
|
||||||
|
|
||||||
test = fluid.Program()
|
|
||||||
|
|
||||||
with fluid.program_guard(test, fluid.Program()):
|
|
||||||
test_args = network_cfg(is_train=False)
|
|
||||||
|
|
||||||
# startup
|
|
||||||
place = fluid.CUDAPlace(0)
|
|
||||||
exe = fluid.Executor(place=place)
|
|
||||||
exe.run(startup)
|
|
||||||
|
|
||||||
train_exe = fluid.ParallelExecutor(
|
|
||||||
use_cuda=True, loss_name=train_args['loss'].name, main_program=train)
|
|
||||||
|
|
||||||
fetch_var_list = [var.name for var in train_args['log']]
|
|
||||||
for i in xrange(sys.maxint):
|
|
||||||
result = map(numpy.array,
|
|
||||||
train_exe.run(fetch_list=fetch_var_list
|
|
||||||
if i % 1000 == 0 else []))
|
|
||||||
if len(result) != 0:
|
|
||||||
print 'Train: ', result
|
|
||||||
|
|
||||||
if i % 1000 == 0:
|
|
||||||
test_exe = fluid.ParallelExecutor(
|
|
||||||
use_cuda=True, main_program=test, share_vars_from=train_exe)
|
|
||||||
loss = []
|
|
||||||
acc = []
|
|
||||||
try:
|
|
||||||
while True:
|
|
||||||
loss_np, acc_np = map(
|
|
||||||
numpy.array, test_exe.run(fetch_list=fetch_var_list))
|
|
||||||
loss.append(loss_np[0])
|
|
||||||
acc.append(acc_np[0])
|
|
||||||
except:
|
|
||||||
test_args['file'].reset()
|
|
||||||
print 'TEST: ', numpy.mean(loss), numpy.mean(acc)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
Loading…
Reference in new issue