commit
1083e99520
@ -0,0 +1,48 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include "paddle/fluid/platform/hostdevice.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
template <typename T, size_t N>
|
||||
class Array {
|
||||
static_assert(N > 0, "The size of array must be larger than 0");
|
||||
|
||||
public:
|
||||
HOSTDEVICE Array() {}
|
||||
|
||||
HOSTDEVICE explicit Array(const T &val) {
|
||||
for (size_t i = 0; i < N; ++i) data_[i] = val;
|
||||
}
|
||||
|
||||
HOSTDEVICE const T *Get() const { return data_; }
|
||||
|
||||
HOSTDEVICE T *GetMutable() { return data_; }
|
||||
|
||||
HOSTDEVICE T &operator[](size_t index) { return data_[index]; }
|
||||
|
||||
HOSTDEVICE const T &operator[](size_t index) const { return data_[index]; }
|
||||
|
||||
HOSTDEVICE constexpr size_t size() const { return N; }
|
||||
|
||||
private:
|
||||
T data_[N];
|
||||
};
|
||||
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,41 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using LoDTensor = framework::LoDTensor;
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
class AttentionLSTMOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override;
|
||||
|
||||
protected:
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override;
|
||||
};
|
||||
|
||||
class AttentionLSTMOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
void Make() override;
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,105 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include <string>
|
||||
#include "paddle/fluid/platform/cpu_info.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
namespace math {
|
||||
|
||||
#define SIGMOID_THRESHOLD_MIN -40.0
|
||||
#define SIGMOID_THRESHOLD_MAX 13.0
|
||||
#define EXP_MAX_INPUT 40.0
|
||||
|
||||
template <typename T>
|
||||
inline T sigmoid(T x) {
|
||||
return 1. / (1. + exp(-x));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline T tanh(T x) {
|
||||
return 2. * sigmoid(2. * x) - 1.;
|
||||
}
|
||||
|
||||
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
|
||||
inline void vec_identity(const int n, const T* x, T* y) {
|
||||
// do nothing
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
|
||||
inline void vec_sigmoid(const int n, const T* x, T* y) {
|
||||
const T min = SIGMOID_THRESHOLD_MIN;
|
||||
const T max = SIGMOID_THRESHOLD_MAX;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
T tmp = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
|
||||
y[i] = 1.0 / (1.0 + std::exp(-tmp));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
|
||||
inline void vec_tanh(const int n, const T* x, T* y) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = tanh<T>(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
|
||||
inline void vec_relu(const int n, const T* x, T* y) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = x[i] > 0 ? x[i] : 0;
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void vec_relu<float, platform::jit::avx2>(const int n, const float* x,
|
||||
float* y) {
|
||||
// TODO(TJ): complete me
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = x[i] > 0 ? x[i] : 0;
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void vec_relu<float, platform::jit::avx>(const int n, const float* x,
|
||||
float* y) {
|
||||
// TODO(TJ): complete me
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = x[i] > 0 ? x[i] : 0;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
|
||||
class VecActivations {
|
||||
public:
|
||||
std::function<void(const int, const T*, T*)> operator()(
|
||||
const std::string& type) {
|
||||
if (type == "sigmoid") {
|
||||
return vec_sigmoid<T, isa>;
|
||||
} else if (type == "relu") {
|
||||
return vec_relu<T, isa>;
|
||||
} else if (type == "tanh") {
|
||||
return vec_tanh<T, isa>;
|
||||
} else if (type == "identity" || type == "") {
|
||||
return vec_identity<T, isa>;
|
||||
}
|
||||
PADDLE_THROW("Not support type %s.", type);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace math
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,28 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "paddle/fluid/operators/stack_op.h"
|
||||
|
||||
namespace plat = paddle::platform;
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OPERATOR(stack, ops::StackOp, ops::StackOpMaker,
|
||||
ops::StackGradOpDescMaker);
|
||||
REGISTER_OPERATOR(stack_grad, ops::StackOpGrad);
|
||||
|
||||
REGISTER_OP_CPU_KERNEL(stack, ops::StackKernel<plat::CPUDeviceContext, float>,
|
||||
ops::StackKernel<plat::CPUDeviceContext, double>);
|
||||
|
||||
REGISTER_OP_CPU_KERNEL(stack_grad,
|
||||
ops::StackGradKernel<plat::CPUDeviceContext, float>,
|
||||
ops::StackGradKernel<plat::CPUDeviceContext, double>);
|
@ -0,0 +1,25 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "paddle/fluid/operators/stack_op.h"
|
||||
|
||||
namespace plat = paddle::platform;
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_CUDA_KERNEL(stack, ops::StackKernel<plat::CUDADeviceContext, float>,
|
||||
ops::StackKernel<plat::CUDADeviceContext, double>);
|
||||
|
||||
REGISTER_OP_CUDA_KERNEL(stack_grad,
|
||||
ops::StackGradKernel<plat::CUDADeviceContext, float>,
|
||||
ops::StackGradKernel<plat::CUDADeviceContext, double>);
|
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue