Split callbacks unittest (#29914)
* split callback unittest * rm test_callback from timeout listrevert-31562-mean
parent
01950ceb42
commit
11de384c6d
@ -0,0 +1,131 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import time
|
||||
import random
|
||||
import tempfile
|
||||
import shutil
|
||||
import numpy as np
|
||||
|
||||
import paddle
|
||||
from paddle import Model
|
||||
from paddle.static import InputSpec
|
||||
from paddle.vision.models import LeNet
|
||||
from paddle.hapi.callbacks import config_callbacks
|
||||
from paddle.vision.datasets import MNIST
|
||||
from paddle.metric import Accuracy
|
||||
from paddle.nn.layer.loss import CrossEntropyLoss
|
||||
|
||||
|
||||
class MnistDataset(MNIST):
|
||||
def __init__(self, mode, return_label=True, sample_num=None):
|
||||
super(MnistDataset, self).__init__(mode=mode)
|
||||
self.return_label = return_label
|
||||
if sample_num:
|
||||
self.images = self.images[:sample_num]
|
||||
self.labels = self.labels[:sample_num]
|
||||
|
||||
def __getitem__(self, idx):
|
||||
img, label = self.images[idx], self.labels[idx]
|
||||
img = np.reshape(img, [1, 28, 28])
|
||||
if self.return_label:
|
||||
return img, np.array(self.labels[idx]).astype('int64')
|
||||
return img,
|
||||
|
||||
def __len__(self):
|
||||
return len(self.images)
|
||||
|
||||
|
||||
class TestCallbacks(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.save_dir = tempfile.mkdtemp()
|
||||
|
||||
def tearDown(self):
|
||||
shutil.rmtree(self.save_dir)
|
||||
|
||||
def test_earlystopping(self):
|
||||
paddle.seed(2020)
|
||||
for dynamic in [True, False]:
|
||||
paddle.enable_static if not dynamic else None
|
||||
device = paddle.set_device('cpu')
|
||||
sample_num = 100
|
||||
train_dataset = MnistDataset(mode='train', sample_num=sample_num)
|
||||
val_dataset = MnistDataset(mode='test', sample_num=sample_num)
|
||||
|
||||
net = LeNet()
|
||||
optim = paddle.optimizer.Adam(
|
||||
learning_rate=0.001, parameters=net.parameters())
|
||||
|
||||
inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
|
||||
labels = [InputSpec([None, 1], 'int64', 'label')]
|
||||
|
||||
model = Model(net, inputs=inputs, labels=labels)
|
||||
model.prepare(
|
||||
optim,
|
||||
loss=CrossEntropyLoss(reduction="sum"),
|
||||
metrics=[Accuracy()])
|
||||
callbacks_0 = paddle.callbacks.EarlyStopping(
|
||||
'loss',
|
||||
mode='min',
|
||||
patience=1,
|
||||
verbose=1,
|
||||
min_delta=0,
|
||||
baseline=None,
|
||||
save_best_model=True)
|
||||
callbacks_1 = paddle.callbacks.EarlyStopping(
|
||||
'acc',
|
||||
mode='auto',
|
||||
patience=1,
|
||||
verbose=1,
|
||||
min_delta=0,
|
||||
baseline=0,
|
||||
save_best_model=True)
|
||||
callbacks_2 = paddle.callbacks.EarlyStopping(
|
||||
'loss',
|
||||
mode='auto_',
|
||||
patience=1,
|
||||
verbose=1,
|
||||
min_delta=0,
|
||||
baseline=None,
|
||||
save_best_model=True)
|
||||
callbacks_3 = paddle.callbacks.EarlyStopping(
|
||||
'acc_',
|
||||
mode='max',
|
||||
patience=1,
|
||||
verbose=1,
|
||||
min_delta=0,
|
||||
baseline=0,
|
||||
save_best_model=True)
|
||||
model.fit(
|
||||
train_dataset,
|
||||
val_dataset,
|
||||
batch_size=64,
|
||||
save_freq=10,
|
||||
save_dir=self.save_dir,
|
||||
epochs=10,
|
||||
verbose=0,
|
||||
callbacks=[callbacks_0, callbacks_1, callbacks_2, callbacks_3])
|
||||
# Test for no val_loader
|
||||
model.fit(train_dataset,
|
||||
batch_size=64,
|
||||
save_freq=10,
|
||||
save_dir=self.save_dir,
|
||||
epochs=10,
|
||||
verbose=0,
|
||||
callbacks=[callbacks_0])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -0,0 +1,75 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import sys
|
||||
import unittest
|
||||
import time
|
||||
import random
|
||||
import tempfile
|
||||
import shutil
|
||||
import numpy as np
|
||||
|
||||
import paddle
|
||||
from paddle import Model
|
||||
from paddle.static import InputSpec
|
||||
from paddle.vision.models import LeNet
|
||||
from paddle.hapi.callbacks import config_callbacks
|
||||
import paddle.vision.transforms as T
|
||||
from paddle.vision.datasets import MNIST
|
||||
from paddle.metric import Accuracy
|
||||
from paddle.nn.layer.loss import CrossEntropyLoss
|
||||
|
||||
|
||||
class MnistDataset(MNIST):
|
||||
def __len__(self):
|
||||
return 512
|
||||
|
||||
|
||||
class TestCallbacks(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.save_dir = tempfile.mkdtemp()
|
||||
|
||||
def tearDown(self):
|
||||
shutil.rmtree(self.save_dir)
|
||||
|
||||
def test_visualdl_callback(self):
|
||||
# visualdl not support python2
|
||||
if sys.version_info < (3, ):
|
||||
return
|
||||
|
||||
inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
|
||||
labels = [InputSpec([None, 1], 'int64', 'label')]
|
||||
|
||||
transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
|
||||
train_dataset = MnistDataset(mode='train', transform=transform)
|
||||
eval_dataset = MnistDataset(mode='test', transform=transform)
|
||||
|
||||
net = paddle.vision.LeNet()
|
||||
model = paddle.Model(net, inputs, labels)
|
||||
|
||||
optim = paddle.optimizer.Adam(0.001, parameters=net.parameters())
|
||||
model.prepare(
|
||||
optimizer=optim,
|
||||
loss=paddle.nn.CrossEntropyLoss(),
|
||||
metrics=paddle.metric.Accuracy())
|
||||
|
||||
callback = paddle.callbacks.VisualDL(log_dir='visualdl_log_dir')
|
||||
model.fit(train_dataset,
|
||||
eval_dataset,
|
||||
batch_size=64,
|
||||
callbacks=callback)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue