commit
1242e7944b
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,43 @@
|
|||||||
|
#edit-mode: -*- python -*-
|
||||||
|
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from paddle.trainer_config_helpers import *
|
||||||
|
|
||||||
|
settings(batch_size=10)
|
||||||
|
data = data_layer(name ="input", size=8*16*16)
|
||||||
|
conv1 = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
|
||||||
|
num_channels=8,
|
||||||
|
num_filters=16, stride=1,
|
||||||
|
bias_attr=False,
|
||||||
|
act=ReluActivation(),
|
||||||
|
layer_type="exconv")
|
||||||
|
conv2 = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
|
||||||
|
num_channels=8,
|
||||||
|
num_filters=16, stride=1,
|
||||||
|
bias_attr=False,
|
||||||
|
act=ReluActivation(),
|
||||||
|
layer_type="exconv")
|
||||||
|
|
||||||
|
concat = concat_layer(input=[conv1, conv2])
|
||||||
|
|
||||||
|
conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
|
||||||
|
num_channels=8,
|
||||||
|
num_filters=16, stride=1,
|
||||||
|
bias_attr=True,
|
||||||
|
act=LinearActivation(),
|
||||||
|
groups=2,
|
||||||
|
layer_type="exconv")
|
||||||
|
|
||||||
|
outputs(concat, conv)
|
@ -0,0 +1,199 @@
|
|||||||
|
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include <gtest/gtest.h>
|
||||||
|
#include <vector>
|
||||||
|
#include <string>
|
||||||
|
#include "paddle/gserver/layers/DataLayer.h"
|
||||||
|
#include "ModelConfig.pb.h"
|
||||||
|
#include "paddle/trainer/Trainer.h"
|
||||||
|
#include "paddle/utils/GlobalConstants.h"
|
||||||
|
#include "paddle/gserver/layers/ExpandConvTransLayer.h"
|
||||||
|
#include "paddle/math/MathUtils.h"
|
||||||
|
|
||||||
|
#include "TestUtil.h"
|
||||||
|
#include "LayerGradUtil.h"
|
||||||
|
|
||||||
|
using namespace paddle; // NOLINT
|
||||||
|
using namespace std; // NOLINT
|
||||||
|
|
||||||
|
P_DECLARE_bool(use_gpu);
|
||||||
|
P_DECLARE_int32(gpu_id);
|
||||||
|
P_DECLARE_double(checkgrad_eps);
|
||||||
|
P_DECLARE_bool(thread_local_rand_use_global_seed);
|
||||||
|
P_DECLARE_bool(prev_batch_state);
|
||||||
|
|
||||||
|
// Do one forward pass of convTrans layer and check to see if its output
|
||||||
|
// matches the given result
|
||||||
|
MatrixPtr doOneConvTest(size_t imgSize, size_t output_x, size_t stride,
|
||||||
|
size_t padding, size_t filter_size, size_t channel,
|
||||||
|
size_t numfilters, size_t groups, MatrixPtr& inputData,
|
||||||
|
real* param, bool useGpu) {
|
||||||
|
TestConfig config;
|
||||||
|
config.biasSize = numfilters;
|
||||||
|
if (useGpu) {
|
||||||
|
config.layerConfig.set_type("cudnn_conv");
|
||||||
|
} else {
|
||||||
|
config.layerConfig.set_type("exconv");
|
||||||
|
}
|
||||||
|
config.layerConfig.set_num_filters(numfilters);
|
||||||
|
config.layerConfig.set_partial_sum(1);
|
||||||
|
config.layerConfig.set_shared_biases(true);
|
||||||
|
|
||||||
|
size_t weightSize = channel* filter_size * filter_size *
|
||||||
|
config.layerConfig.num_filters() / groups;
|
||||||
|
config.inputDefs.push_back({INPUT_DATA, "layer_0",
|
||||||
|
imgSize * imgSize * channel,
|
||||||
|
weightSize});
|
||||||
|
LayerInputConfig* input = config.layerConfig.add_inputs();
|
||||||
|
ConvConfig* conv = input->mutable_conv_conf();
|
||||||
|
conv->set_filter_size(filter_size);
|
||||||
|
conv->set_filter_size_y(filter_size);
|
||||||
|
conv->set_channels(channel);
|
||||||
|
conv->set_padding(padding);
|
||||||
|
conv->set_padding_y(padding);
|
||||||
|
conv->set_stride(stride);
|
||||||
|
conv->set_stride_y(stride);
|
||||||
|
conv->set_groups(groups);
|
||||||
|
conv->set_filter_channels(channel/groups);
|
||||||
|
conv->set_img_size(imgSize);
|
||||||
|
conv->set_output_x(output_x);
|
||||||
|
|
||||||
|
config.layerConfig.set_size(conv->output_x() * conv->output_x() *
|
||||||
|
config.layerConfig.num_filters());
|
||||||
|
config.layerConfig.set_name("conv");
|
||||||
|
|
||||||
|
std::vector<DataLayerPtr> dataLayers;
|
||||||
|
LayerMap layerMap;
|
||||||
|
vector<Argument> datas;
|
||||||
|
initDataLayer(config, &dataLayers, &datas, &layerMap, "conv",
|
||||||
|
1, false, useGpu);
|
||||||
|
dataLayers[0]->getOutputValue()->zeroMem();
|
||||||
|
dataLayers[0]->getOutputValue()->copyFrom(*inputData);
|
||||||
|
|
||||||
|
// test layer initialize
|
||||||
|
std::vector<ParameterPtr> parameters;
|
||||||
|
LayerPtr convLayer;
|
||||||
|
initTestLayer(config, &layerMap, ¶meters, &convLayer);
|
||||||
|
convLayer->getBiasParameter()->zeroMem();
|
||||||
|
convLayer->getParameters()[0]->zeroMem();
|
||||||
|
convLayer->getParameters()[0]->getBuf(PARAMETER_VALUE)->copyFrom(param,
|
||||||
|
weightSize);
|
||||||
|
convLayer->forward(PASS_GC);
|
||||||
|
|
||||||
|
return convLayer->getOutputValue();
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Layer, convParaUnified) {
|
||||||
|
#ifndef PADDLE_ONLY_CPU
|
||||||
|
MatrixPtr input, resultCpu, resultGpu;
|
||||||
|
input = Matrix::create(1, 4 * 4, false, false);
|
||||||
|
float inputData[] = {1, 2, 3, 4,
|
||||||
|
5, 6, 7, 8,
|
||||||
|
9, 10, 11, 12,
|
||||||
|
13, 14, 15, 16};
|
||||||
|
float param[] = {1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||||||
|
9, 8, 7, 6, 5, 4, 3, 2, 1};
|
||||||
|
|
||||||
|
input->setData(inputData);
|
||||||
|
|
||||||
|
resultCpu = doOneConvTest(/* imgSize */ 4,
|
||||||
|
/* output_x */ 2,
|
||||||
|
/* stride */ 1,
|
||||||
|
/* padding */ 0,
|
||||||
|
/* filter_size */ 3,
|
||||||
|
/*channel*/ 1,
|
||||||
|
/*numfilters*/ 2,
|
||||||
|
/*groups*/ 1,
|
||||||
|
input, param, false);
|
||||||
|
|
||||||
|
resultGpu = doOneConvTest(/* imgSize */ 4,
|
||||||
|
/* output_x */ 2,
|
||||||
|
/* stride */ 1,
|
||||||
|
/* padding */ 0,
|
||||||
|
/* filter_size */ 3,
|
||||||
|
/*channel*/ 1,
|
||||||
|
/*numfilters*/ 2,
|
||||||
|
/*groups*/ 1,
|
||||||
|
input, param, true);
|
||||||
|
checkMatrixEqual(resultCpu, resultGpu);
|
||||||
|
|
||||||
|
input = Matrix::create(1, 3 * 3 * 2, false, false);
|
||||||
|
float inputData2[] = {1, 2, 3,
|
||||||
|
4, 5, 6,
|
||||||
|
7, 8, 9,
|
||||||
|
|
||||||
|
10, 11, 12,
|
||||||
|
13, 14, 15,
|
||||||
|
16, 17, 18};
|
||||||
|
float param2[] = {1, 2, 3, 4, 5, 6, 7, 8,
|
||||||
|
8, 7, 6, 5, 4, 3, 2, 1};
|
||||||
|
|
||||||
|
input->setData(inputData2);
|
||||||
|
|
||||||
|
resultCpu = doOneConvTest(/* imgSize */ 3,
|
||||||
|
/* output_x */ 2,
|
||||||
|
/* stride */ 1,
|
||||||
|
/* padding */ 0,
|
||||||
|
/* filter_size */ 2,
|
||||||
|
/*channel*/ 2,
|
||||||
|
/*numfilters*/ 2,
|
||||||
|
/*groups*/ 1,
|
||||||
|
input, param2, false);
|
||||||
|
|
||||||
|
resultGpu = doOneConvTest(/* imgSize */ 3,
|
||||||
|
/* output_x */ 2,
|
||||||
|
/* stride */ 1,
|
||||||
|
/* padding */ 0,
|
||||||
|
/* filter_size */ 2,
|
||||||
|
/*channel*/ 2,
|
||||||
|
/*numfilters*/ 2,
|
||||||
|
/*groups*/ 1,
|
||||||
|
input, param2, true);
|
||||||
|
checkMatrixEqual(resultCpu, resultGpu);
|
||||||
|
|
||||||
|
|
||||||
|
float param3[] = {1, 2, 3, 4,
|
||||||
|
4, 3, 2, 1};
|
||||||
|
|
||||||
|
resultCpu = doOneConvTest(/* imgSize */ 3,
|
||||||
|
/* output_x */ 2,
|
||||||
|
/* stride */ 1,
|
||||||
|
/* padding */ 0,
|
||||||
|
/* filter_size */ 2,
|
||||||
|
/*channel*/ 2,
|
||||||
|
/*numfilters*/ 2,
|
||||||
|
/*groups*/ 2,
|
||||||
|
input, param3, false);
|
||||||
|
|
||||||
|
resultGpu = doOneConvTest(/* imgSize */ 3,
|
||||||
|
/* output_x */ 2,
|
||||||
|
/* stride */ 1,
|
||||||
|
/* padding */ 0,
|
||||||
|
/* filter_size */ 2,
|
||||||
|
/*channel*/ 2,
|
||||||
|
/*numfilters*/ 2,
|
||||||
|
/*groups*/ 2,
|
||||||
|
input, param3, true);
|
||||||
|
checkMatrixEqual(resultCpu, resultGpu);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char** argv) {
|
||||||
|
testing::InitGoogleTest(&argc, argv);
|
||||||
|
initMain(argc, argv);
|
||||||
|
FLAGS_thread_local_rand_use_global_seed = true;
|
||||||
|
srand(1);
|
||||||
|
return RUN_ALL_TESTS();
|
||||||
|
}
|
Loading…
Reference in new issue