parent
a3f0aed00d
commit
12e9c003b6
@ -0,0 +1,58 @@
|
|||||||
|
import py_paddle.swig_paddle as swig_api
|
||||||
|
import paddle.trainer_config_helpers.optimizers as v1_optimizers
|
||||||
|
import paddle.trainer_config_helpers.config_parser_utils as config_parser_utils
|
||||||
|
import paddle.v2
|
||||||
|
|
||||||
|
__all__ = ['Adam', 'Adamax']
|
||||||
|
|
||||||
|
|
||||||
|
class Optimizer(object):
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
if 'batch_size' in kwargs:
|
||||||
|
del kwargs['batch_size'] # not important for python library.
|
||||||
|
|
||||||
|
def __impl__():
|
||||||
|
v1_optimizers.settings(batch_size=1, **kwargs)
|
||||||
|
|
||||||
|
self.__opt_conf_proto__ = config_parser_utils.parse_optimizer_config(
|
||||||
|
__impl__)
|
||||||
|
self.__opt_conf__ = swig_api.OptimizationConfig.createFromProto(
|
||||||
|
self.__opt_conf_proto__)
|
||||||
|
|
||||||
|
def enable_types(self):
|
||||||
|
"""
|
||||||
|
get enable_types for each optimizer.
|
||||||
|
enable_types = [value, gradient, momentum, etc]
|
||||||
|
For each optimizer(SGD, Adam), GradientMachine should enable different
|
||||||
|
buffers.
|
||||||
|
"""
|
||||||
|
tmp = swig_api.ParameterOptimizer.create(self.__opt_conf__)
|
||||||
|
assert isinstance(tmp, swig_api.ParameterOptimizer)
|
||||||
|
return tmp.getParameterTypes()
|
||||||
|
|
||||||
|
def create_local_updater(self):
|
||||||
|
return swig_api.ParameterUpdater.createLocalUpdater(self.__opt_conf__)
|
||||||
|
|
||||||
|
def create_remote_updater(self, pass_num):
|
||||||
|
return swig_api.ParameterUpdater.createRemoteUpdater(self.__opt_conf__,
|
||||||
|
pass_num)
|
||||||
|
|
||||||
|
|
||||||
|
class Adam(Optimizer):
|
||||||
|
def __init__(self, beta1=0.9, beta2=0.999, epsilon=1e-8, **kwargs):
|
||||||
|
learning_method = v1_optimizers.AdamOptimizer(
|
||||||
|
beta1=beta1, beta2=beta2, epsilon=epsilon)
|
||||||
|
super(Adam, self).__init__(learning_method=learning_method, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
class Adamax(Optimizer):
|
||||||
|
def __init__(self, beta1=0.9, beta2=0.999, **kwargs):
|
||||||
|
learning_method = v1_optimizers.AdamaxOptimizer(
|
||||||
|
beta1=beta1, beta2=beta2)
|
||||||
|
super(Adamax, self).__init__(learning_method=learning_method, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
swig_api.initPaddle('--use_gpu=false')
|
||||||
|
opt = paddle.v2.optimizer.Adam()
|
||||||
|
print opt.enable_types()
|
Loading…
Reference in new issue