Add fleet amp_init() (#30572)
* add fleet amp.init() * add unittest for fleet_amp_initrevert-31068-fix_conv3d_windows
parent
2d5758c456
commit
138620084c
@ -0,0 +1,80 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle
|
||||
import paddle.distributed.fleet.base.role_maker as role_maker
|
||||
import paddle.distributed.fleet as fleet
|
||||
import paddle.fluid as fluid
|
||||
import unittest
|
||||
import paddle.nn.functional as F
|
||||
import numpy as np
|
||||
|
||||
paddle.enable_static()
|
||||
|
||||
|
||||
def gen_data():
|
||||
return {
|
||||
"x": np.random.random(size=(128, 32)).astype('float32'),
|
||||
"y": np.random.randint(
|
||||
2, size=(128, 1)).astype('int64')
|
||||
}
|
||||
|
||||
|
||||
def mlp(input_x, input_y, hid_dim=128, label_dim=2):
|
||||
fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
|
||||
fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
|
||||
prediction = paddle.static.nn.fc(x=[fc_2],
|
||||
size=label_dim,
|
||||
activation='softmax')
|
||||
cost = F.cross_entropy(input=prediction, label=input_y)
|
||||
avg_cost = paddle.mean(x=cost)
|
||||
return avg_cost
|
||||
|
||||
|
||||
class TestFleetAMPInit(unittest.TestCase):
|
||||
def test_fleet_amp_init(self):
|
||||
if not fluid.core.is_compiled_with_cuda():
|
||||
return
|
||||
input_x = paddle.static.data(
|
||||
name="x", shape=[None, 32], dtype='float32')
|
||||
input_y = paddle.static.data(name="y", shape=[None, 1], dtype='int64')
|
||||
|
||||
cost = mlp(input_x, input_y)
|
||||
optimizer = paddle.optimizer.Momentum(
|
||||
learning_rate=0.001,
|
||||
momentum=0.9,
|
||||
weight_decay=fluid.regularizer.L2Decay(1e-4),
|
||||
multi_precision=True)
|
||||
|
||||
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
|
||||
fleet.init(role)
|
||||
|
||||
optimizer = paddle.static.amp.decorate(optimizer)
|
||||
optimizer = fleet.distributed_optimizer(optimizer)
|
||||
optimizer.minimize(cost)
|
||||
place = paddle.CUDAPlace(0)
|
||||
|
||||
exe = paddle.static.Executor(place)
|
||||
exe.run(paddle.static.default_startup_program())
|
||||
optimizer.amp_init(place, use_fp16_test=True)
|
||||
|
||||
step = 1
|
||||
for i in range(step):
|
||||
cost_val = exe.run(program=paddle.static.default_main_program(),
|
||||
feed=gen_data(),
|
||||
fetch_list=[cost.name])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue