Merge pull request #11897 from chenwhql/unsqueeze_op
Add Unsqueeze operator and unit testingguochaorong-patch-1
commit
1617fe2edd
@ -0,0 +1,191 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class UnsqueezeOpInferShape : public framework::InferShapeBase {
|
||||
public:
|
||||
void operator()(framework::InferShapeContext *ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||
"Input(X) of UnsqueezeOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||
"Output(Out) of UnsqueezeOp should not be null.");
|
||||
|
||||
const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
|
||||
const auto &x_dims = ctx->GetInputDim("X");
|
||||
// Validity Check: input tensor dims (<6).
|
||||
PADDLE_ENFORCE(x_dims.size() <= 6,
|
||||
"Invalid dimensions, the rank of Input(X) "
|
||||
"should be in the range of [1, 6] (Eigen limit)");
|
||||
auto out_dims = GetOutputShape(axes, x_dims);
|
||||
ctx->SetOutputDim("Out", out_dims);
|
||||
if (x_dims[0] == out_dims[0]) {
|
||||
// Only pass LoD when the first dimension of output and Input(X)
|
||||
// are the same.
|
||||
ctx->ShareLoD("X", "Out");
|
||||
}
|
||||
}
|
||||
|
||||
static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
|
||||
const framework::DDim &in_dims) {
|
||||
int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
|
||||
int cur_output_size = in_dims.size();
|
||||
std::vector<int64_t> output_shape(output_size, 0);
|
||||
|
||||
// Validity Check: rank range.
|
||||
PADDLE_ENFORCE(output_size <= 6,
|
||||
"The output tensor's rank should be less than 6.");
|
||||
|
||||
for (int axis : unsqz_dims) {
|
||||
int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
|
||||
// Vaildity Check: the axis bound
|
||||
PADDLE_ENFORCE(
|
||||
cur >= 0 && cur <= cur_output_size,
|
||||
"The unsqueeze dims must be within range of current rank.");
|
||||
// Move old axis, and insert new axis
|
||||
for (int i = cur_output_size; i >= cur; --i) {
|
||||
if (output_shape[i] == 1) {
|
||||
// Move axis
|
||||
output_shape[i + 1] = 1;
|
||||
output_shape[i] = 0;
|
||||
}
|
||||
}
|
||||
output_shape[cur] = 1;
|
||||
// Add the output size.
|
||||
cur_output_size++;
|
||||
}
|
||||
|
||||
// Make output shape
|
||||
for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
|
||||
if (output_shape[out_idx] == 0) {
|
||||
output_shape[out_idx] = in_dims[in_idx++];
|
||||
}
|
||||
}
|
||||
|
||||
return framework::make_ddim(output_shape);
|
||||
}
|
||||
};
|
||||
|
||||
class UnsqueezeOp : public framework::OperatorBase {
|
||||
public:
|
||||
using OperatorBase::OperatorBase;
|
||||
|
||||
private:
|
||||
void RunImpl(const framework::Scope &scope,
|
||||
const platform::Place &place) const override {
|
||||
auto &axes = Attr<std::vector<int>>("axes");
|
||||
auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
|
||||
auto out_dims = UnsqueezeOpInferShape::GetOutputShape(axes, x_dims);
|
||||
|
||||
framework::AttributeMap attrs;
|
||||
attrs["shape"] = framework::vectorize2int(out_dims);
|
||||
attrs["inplace"] = Attr<bool>("inplace");
|
||||
// Invoke Reshape op.
|
||||
auto reshape_op = framework::OpRegistry::CreateOp(
|
||||
"reshape", {{"X", {Input("X")}}, {"Shape", {}}},
|
||||
{{"Out", {Output("Out")}}}, attrs);
|
||||
reshape_op->Run(scope, place);
|
||||
}
|
||||
};
|
||||
|
||||
class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
void Make() override {
|
||||
AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
|
||||
AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
|
||||
AddAttr<std::vector<int>>("axes",
|
||||
"(std::vector<int>). List of integers,"
|
||||
" indicating the dimensions to be inserted")
|
||||
.AddCustomChecker([](const std::vector<int> &axes) {
|
||||
PADDLE_ENFORCE(!axes.empty(),
|
||||
"Invalid axes, The unsqueeze axes is empty.");
|
||||
// Validity Check: axes dims (<6).
|
||||
PADDLE_ENFORCE(static_cast<int>(axes.size()) < 6,
|
||||
"Invalid dimensions, dynamic dimensions should be "
|
||||
"within [1, 6] dimensions (Eigen limit).");
|
||||
// Validity Check: the range of unsqueeze aixs.
|
||||
for (int axis : axes) {
|
||||
PADDLE_ENFORCE(axis < 6,
|
||||
"Invalid dimensions, input axis should be"
|
||||
" within [1, 6] dimensions (Eigen limit).");
|
||||
}
|
||||
});
|
||||
AddAttr<bool>(
|
||||
"inplace",
|
||||
"(default: false) Unsqueeze the source tensor's shape without "
|
||||
"memory copy. When Attr(inplace) is set true, the output "
|
||||
"tensor shares memory with Input(X), otherwise, a new output "
|
||||
"tensor is created, and its data are copied from Input(x).")
|
||||
.SetDefault(false);
|
||||
AddComment(R"DOC(
|
||||
Unsqueeze Operator.
|
||||
|
||||
Insert single-dimensional entries to the shape of a tensor.
|
||||
Takes one required argument axes, a list of dimensions that will be inserted.
|
||||
Dimension indices in axes are as seen in the output tensor.
|
||||
|
||||
For example:
|
||||
Given a tensor such that tensor with shape [3, 4, 5],
|
||||
then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class UnsqueezeGradInferShape : public framework::InferShapeBase {
|
||||
public:
|
||||
void operator()(framework::InferShapeContext *ctx) const override {
|
||||
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
||||
ctx->ShareLoD("X", framework::GradVarName("X"));
|
||||
}
|
||||
};
|
||||
|
||||
class UnsqueezeGradOp : public framework::OperatorBase {
|
||||
public:
|
||||
using OperatorBase::OperatorBase;
|
||||
|
||||
private:
|
||||
void RunImpl(const framework::Scope &scope,
|
||||
const platform::Place &place) const override {
|
||||
auto dx_name = Output(framework::GradVarName("X"));
|
||||
auto dout_name = Input(framework::GradVarName("Out"));
|
||||
auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
|
||||
|
||||
framework::AttributeMap attrs;
|
||||
attrs["shape"] = framework::vectorize2int(x_dims);
|
||||
attrs["inplace"] = Attr<bool>("inplace");
|
||||
|
||||
auto reshape_op = framework::OpRegistry::CreateOp(
|
||||
"reshape", {{"X", {dout_name}}, {"Shape", {}}}, {{"Out", {dx_name}}},
|
||||
attrs);
|
||||
reshape_op->Run(scope, place);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
// Tell linker to use reshape op.
|
||||
USE_OP(reshape);
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
|
||||
ops::UnsqueezeOpInferShape,
|
||||
paddle::framework::DefaultGradOpDescMaker<true>);
|
||||
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp,
|
||||
ops::UnsqueezeGradInferShape);
|
@ -0,0 +1,111 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
# Correct: General.
|
||||
class TestUnsqueezeOp(OpTest):
|
||||
def setUp(self):
|
||||
self.init_test_case()
|
||||
self.op_type = "unsqueeze"
|
||||
self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
|
||||
self.init_attrs()
|
||||
self.outputs = {"Out": self.inputs["X"].reshape(self.new_shape)}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(["X"], "Out")
|
||||
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (3, 5)
|
||||
self.axes = (1, 2)
|
||||
self.new_shape = (3, 1, 1, 5)
|
||||
|
||||
def init_attrs(self):
|
||||
self.attrs = {"axes": self.axes, "inplace": False}
|
||||
|
||||
|
||||
# Correct: Single input index.
|
||||
class TestUnsqueezeOp1(TestUnsqueezeOp):
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (3, 5)
|
||||
self.axes = (-1, )
|
||||
self.new_shape = (3, 5, 1)
|
||||
|
||||
|
||||
# Correct: Mixed input axis.
|
||||
class TestUnsqueezeOp2(TestUnsqueezeOp):
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (3, 5)
|
||||
self.axes = (0, -1)
|
||||
self.new_shape = (1, 3, 5, 1)
|
||||
|
||||
|
||||
# Correct: There is duplicated axis.
|
||||
class TestUnsqueezeOp3(TestUnsqueezeOp):
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (3, 2, 5)
|
||||
self.axes = (0, 3, 3)
|
||||
self.new_shape = (1, 3, 2, 1, 1, 5)
|
||||
|
||||
|
||||
# Correct: Reversed axes.
|
||||
class TestUnsqueezeOp4(TestUnsqueezeOp):
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (3, 2, 5)
|
||||
self.axes = (3, 1, 1)
|
||||
self.new_shape = (3, 1, 1, 2, 5, 1)
|
||||
|
||||
|
||||
# Correct: Inplace.
|
||||
class TestUnsqueezeOpInplace1(TestUnsqueezeOp):
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (3, 5)
|
||||
self.axes = (0, 2)
|
||||
self.new_shape = (1, 3, 1, 5)
|
||||
|
||||
def init_attrs(self):
|
||||
self.attrs = {"axes": self.axes, "inplace": True}
|
||||
|
||||
|
||||
# Correct: Inplace. There is mins index.
|
||||
class TestUnsqueezeOpInplace2(TestUnsqueezeOp):
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (3, 5)
|
||||
self.axes = (0, -2)
|
||||
self.new_shape = (1, 3, 1, 5)
|
||||
|
||||
def init_attrs(self):
|
||||
self.attrs = {"axes": self.axes, "inplace": True}
|
||||
|
||||
|
||||
# Correct: Inplace. There is duplicated axis.
|
||||
class TestUnsqueezeOpInplace3(TestUnsqueezeOp):
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (3, 2, 5)
|
||||
self.axes = (0, 3, 3)
|
||||
self.new_shape = (1, 3, 2, 1, 1, 5)
|
||||
|
||||
def init_attrs(self):
|
||||
self.attrs = {"axes": self.axes, "inplace": True}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue