Merge pull request #4011 from tensor-tang/refine

Refine MKLDNNLayer and MKLDNNTester
enforce_failed
Tao Luo 8 years ago committed by GitHub
commit 171fee2c9e

@ -49,6 +49,12 @@ struct LayerState {
}; };
typedef std::shared_ptr<LayerState> LayerStatePtr; typedef std::shared_ptr<LayerState> LayerStatePtr;
/// Paddle device ID, MKLDNN is -2, CPU is -1
enum PADDLE_DEVICE_ID {
MKLDNN_DEVICE = -2,
CPU_DEVICE = -1,
};
/** /**
* @brief Base class for layer. * @brief Base class for layer.
* Define necessary variables and functions for every layer. * Define necessary variables and functions for every layer.
@ -59,11 +65,6 @@ protected:
LayerConfig config_; LayerConfig config_;
/// whether to use GPU /// whether to use GPU
bool useGpu_; bool useGpu_;
/// Paddle device ID, MKLDNN is -2, CPU is -1
enum PADDLE_DEVICE_ID {
MKLDNN_DEVICE = -2,
CPU_DEVICE = -1,
};
/// Device Id. MKLDNN is -2, CPU is -1, and GPU is 0, 1, 2 ... /// Device Id. MKLDNN is -2, CPU is -1, and GPU is 0, 1, 2 ...
int deviceId_; int deviceId_;
/// Input layers /// Input layers

File diff suppressed because it is too large Load Diff

@ -45,35 +45,28 @@ public:
bool init(const LayerMap& layerMap, bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override; const ParameterMap& parameterMap) override;
void convertWeightsFromPaddle() override; void reshape(
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override;
void convertWeightsToPaddle() override;
void forward(PassType passType) override; void resetFwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) override;
void backward(const UpdateCallback& callback) override; void resetBwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) override;
void updateInputData() override; void updateInputData() override;
protected: void updateWeights(const UpdateCallback& callback) override;
/**
* reshape the input image sizes
* and reset output buffer size
* and reset mkldnn forward
*/
void reshape();
/** void convertWeightsFromPaddle() override;
* reset the forward primitve and memory
* only would be called when input size changes
*/
void resetFwd();
/** void convertWeightsToPaddle() override;
* reset the backward primitve and memory for mkldnn fc
* only would be called when needed
*/
void resetBwd();
}; };
} // namespace paddle } // namespace paddle

File diff suppressed because it is too large Load Diff

@ -63,8 +63,12 @@ void MKLDNNTester::reset(const TestConfig& dnn,
initTestLayer( initTestLayer(
configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i])); configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i]));
} }
dnnLayer_ = testLayers_[DNN];
refLayer_ = testLayers_[REF]; refLayer_ = testLayers_[REF];
dnnLayer_ = std::dynamic_pointer_cast<MKLDNNLayer>(testLayers_[DNN]);
CHECK(dnnLayer_);
// for comparison with Paddle reference results,
// need manually add cpu device output for test
dnnLayer_->addOutputArgument(CPU_DEVICE);
EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size()); EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size());
EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size()); EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
@ -109,20 +113,22 @@ void MKLDNNTester::randomBotDatas() {
void MKLDNNTester::randomTopDiffs() { void MKLDNNTester::randomTopDiffs() {
refLayer_->getOutputGrad()->randomizeUniform(); refLayer_->getOutputGrad()->randomizeUniform();
dnnLayer_->getOutputGrad()->copyFrom(*(refLayer_->getOutputGrad())); dnnLayer_->getOutput(CPU_DEVICE)
VLOG(lvl_) << "Random dom Backward Input, TopDiff: "; .grad->copyFrom(*(refLayer_->getOutputGrad()));
VLOG(lvl_) << "Random Backward Input, TopDiff: ";
printMatrix(refLayer_->getOutputGrad()); printMatrix(refLayer_->getOutputGrad());
} }
void MKLDNNTester::checkForward() { void MKLDNNTester::checkForward() {
printTopDatas();
double delta = compareMatrix(testLayers_[DNN]->getOutputValue(),
testLayers_[REF]->getOutputValue());
VLOG(MKLDNN_ALL) << "Check Forward"; VLOG(MKLDNN_ALL) << "Check Forward";
printTopDatas();
double delta = compareMatrix(dnnLayer_->getOutput(-1).value,
refLayer_->getOutputValue());
EXPECT_LE(fabs(delta), eps_); EXPECT_LE(fabs(delta), eps_);
} }
void MKLDNNTester::checkBackwardData() { void MKLDNNTester::checkBackwardData() {
VLOG(MKLDNN_ALL) << "Check Backward Data";
// TODO(TJ): uncomment me when batch norm ready // TODO(TJ): uncomment me when batch norm ready
// const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm"; // const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) { for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
@ -144,14 +150,12 @@ void MKLDNNTester::checkBackwardData() {
} }
void MKLDNNTester::checkBackwardWgts() { void MKLDNNTester::checkBackwardWgts() {
VLOG(MKLDNN_ALL) << "Check Backward Weight";
CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size()); CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
vector<VectorPtr> dnnWgts; // used to temply save mkldnn weights vector<VectorPtr> dnnWgts; // used to temply save mkldnn weights
saveWgt(parameters_[DNN], dnnWgts); saveWgt(parameters_[DNN], dnnWgts);
const MKLDNNLayerPtr dnnlayer = dnnLayer_->convertWeightsToPaddle();
std::dynamic_pointer_cast<MKLDNNLayer>(dnnLayer_);
CHECK(dnnlayer);
dnnlayer->convertWeightsToPaddle();
for (size_t i = 0; i < parameters_[DNN].size(); ++i) { for (size_t i = 0; i < parameters_[DNN].size(); ++i) {
const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE); const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE); const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
@ -189,8 +193,10 @@ void MKLDNNTester::restoreWgt(const vector<VectorPtr>& from,
} }
// clear parameters grad // clear parameters grad
void MKLDNNTester::clearWgtDiffs() { void MKLDNNTester::clearWgtDiffs(size_t id) {
CHECK_LE(id, parameters_.size());
for (size_t n = 0; n < parameters_.size(); ++n) { for (size_t n = 0; n < parameters_.size(); ++n) {
if (id == n || id == parameters_.size()) {
for (size_t i = 0; i < parameters_[n].size(); ++i) { for (size_t i = 0; i < parameters_[n].size(); ++i) {
const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT); const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT);
if (grad) { if (grad) {
@ -198,30 +204,28 @@ void MKLDNNTester::clearWgtDiffs() {
} }
} }
} }
}
} }
void MKLDNNTester::clearBotDiffs() { void MKLDNNTester::clearBotDiffs(size_t id) {
// dnn and ref CHECK_LE(id, dataLayers_.size());
for (size_t n = 0; n < dataLayers_.size(); ++n) { for (size_t n = 0; n < dataLayers_.size(); ++n) {
// all inputs layers if (id == n || id == dataLayers_.size()) {
// clear inputs layers of this specific layer
for (size_t i = 0; i < dataLayers_[n].size(); ++i) { for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
dataLayers_[n][i]->getOutputGrad()->zeroMem(); dataLayers_[n][i]->getOutputGrad()->zeroMem();
} }
} }
}
void MKLDNNTester::clearBotDiffs(int n) {
CHECK_LT(n, NUM);
// all inputs layers
for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
dataLayers_[n][i]->getOutputGrad()->zeroMem();
} }
} }
void MKLDNNTester::clearTopDatas() { void MKLDNNTester::clearTopDatas(size_t id) {
CHECK_LE(id, testLayers_.size());
for (size_t i = 0; i < testLayers_.size(); ++i) { for (size_t i = 0; i < testLayers_.size(); ++i) {
if (id == i || id == testLayers_.size()) {
testLayers_[i]->getOutputValue()->zeroMem(); testLayers_[i]->getOutputValue()->zeroMem();
} }
}
} }
void MKLDNNTester::printTopDatas() { void MKLDNNTester::printTopDatas() {
@ -300,16 +304,24 @@ void MKLDNNTester::runOnce() {
checkForward(); checkForward();
// test backward // test backward
// simple updater
UpdateCallback updateCallback = [](Parameter* para) {
auto& grad = para->getBuf(PARAMETER_GRADIENT);
auto& value = para->getBuf(PARAMETER_VALUE);
real lr = 1e-3;
value->add(*grad, lr);
};
randomTopDiffs(); randomTopDiffs();
dnnLayer_->backward(nullptr); dnnLayer_->backward(updateCallback);
refLayer_->backward(nullptr); refLayer_->backward(updateCallback);
checkBackwardData(); checkBackwardData();
checkBackwardWgts(); checkBackwardWgts();
// clear buffers // clear buffers
// ref code will addto the diff, dnn code will writeto it // ref code will addto the diff, dnn code will writeto it
// and clearTopDatas() and clearWgtDiffs() should be coverd by test layers // and clearTopDatas(REF) should be coverd by ref layers
clearBotDiffs(REF); clearBotDiffs(REF);
clearWgtDiffs(REF);
} }
void MKLDNNTester::run(const TestConfig& dnn, void MKLDNNTester::run(const TestConfig& dnn,

@ -18,6 +18,7 @@ limitations under the License. */
#include <vector> #include <vector>
#include "LayerGradUtil.h" #include "LayerGradUtil.h"
#include "paddle/gserver/layers/MKLDNNBase.h" #include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNLayer.h"
namespace paddle { namespace paddle {
@ -40,7 +41,8 @@ protected:
vector<LayerMap> layerMaps_; vector<LayerMap> layerMaps_;
vector<vector<ParameterPtr>> parameters_; vector<vector<ParameterPtr>> parameters_;
vector<LayerPtr> testLayers_; vector<LayerPtr> testLayers_;
LayerPtr dnnLayer_, refLayer_; LayerPtr refLayer_;
MKLDNNLayerPtr dnnLayer_;
/// run some iterations, all the result should pass /// run some iterations, all the result should pass
size_t iter_; size_t iter_;
@ -88,10 +90,10 @@ private:
void checkBackwardData(); void checkBackwardData();
void checkBackwardWgts(); void checkBackwardWgts();
void clearWgtDiffs(); // clear specific layer, clear all when id equals NUM
void clearBotDiffs(); void clearWgtDiffs(size_t id = NUM);
void clearBotDiffs(int n); // clear specific layer void clearBotDiffs(size_t id = NUM);
void clearTopDatas(); void clearTopDatas(size_t id = NUM);
void printTopDatas(); void printTopDatas();
void printMatrix(const MatrixPtr& m); void printMatrix(const MatrixPtr& m);

Loading…
Cancel
Save