|
|
|
@ -15,31 +15,52 @@ limitations under the License. */
|
|
|
|
|
#pragma once
|
|
|
|
|
#include "paddle/framework/eigen.h"
|
|
|
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
|
#include "paddle/framework/selected_rows.h"
|
|
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
|
|
template <typename Place, typename T>
|
|
|
|
|
struct SparseSGDFunctor {
|
|
|
|
|
void operator()(const platform::DeviceContext& ctx,
|
|
|
|
|
const framework::SelectedRows& input,
|
|
|
|
|
const framework::Tensor& learning_rate,
|
|
|
|
|
framework::Tensor* output);
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename Place, typename T>
|
|
|
|
|
class SGDOpKernel : public framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
|
|
|
auto param = ctx.Input<framework::Tensor>("Param");
|
|
|
|
|
auto grad = ctx.Input<framework::Tensor>("Grad");
|
|
|
|
|
auto param_out = ctx.Output<framework::Tensor>("ParamOut");
|
|
|
|
|
auto learning_rate = ctx.Input<framework::Tensor>("LearningRate");
|
|
|
|
|
auto* param = ctx.Input<framework::Tensor>("Param");
|
|
|
|
|
auto* param_out = ctx.Output<framework::Tensor>("ParamOut");
|
|
|
|
|
auto* learning_rate = ctx.Input<framework::Tensor>("LearningRate");
|
|
|
|
|
|
|
|
|
|
param_out->mutable_data<T>(ctx.GetPlace());
|
|
|
|
|
auto* grad_var = ctx.InputVar("Grad");
|
|
|
|
|
if (grad_var->IsType<framework::Tensor>()) {
|
|
|
|
|
param_out->mutable_data<T>(ctx.GetPlace());
|
|
|
|
|
auto* grad = ctx.Input<framework::Tensor>("Grad");
|
|
|
|
|
|
|
|
|
|
auto p = framework::EigenVector<T>::Flatten(*param);
|
|
|
|
|
auto g = framework::EigenVector<T>::Flatten(*grad);
|
|
|
|
|
auto o = framework::EigenVector<T>::Flatten(*param_out);
|
|
|
|
|
auto lr = framework::EigenVector<T>::Flatten(*learning_rate);
|
|
|
|
|
auto place = ctx.GetEigenDevice<Place>();
|
|
|
|
|
auto p = framework::EigenVector<T>::Flatten(*param);
|
|
|
|
|
auto g = framework::EigenVector<T>::Flatten(*grad);
|
|
|
|
|
auto o = framework::EigenVector<T>::Flatten(*param_out);
|
|
|
|
|
auto lr = framework::EigenVector<T>::Flatten(*learning_rate);
|
|
|
|
|
auto place = ctx.GetEigenDevice<Place>();
|
|
|
|
|
|
|
|
|
|
Eigen::DSizes<int, 1> grad_dsize(grad->numel());
|
|
|
|
|
o.device(place) = p - lr.broadcast(grad_dsize) * g;
|
|
|
|
|
Eigen::DSizes<int, 1> grad_dsize(grad->numel());
|
|
|
|
|
o.device(place) = p - lr.broadcast(grad_dsize) * g;
|
|
|
|
|
} else if (grad_var->IsType<framework::SelectedRows>()) {
|
|
|
|
|
// TODO(qijun): In Sparse SGD operator, in-place update is enforced.
|
|
|
|
|
// This manual optimization brings difficulty to track data dependency.
|
|
|
|
|
// It's better to find a more elegant solution.
|
|
|
|
|
PADDLE_ENFORCE_EQ(param, param_out);
|
|
|
|
|
auto* grad = ctx.Input<framework::SelectedRows>("Grad");
|
|
|
|
|
SparseSGDFunctor<Place, T> functor;
|
|
|
|
|
functor(ctx.device_context(), *grad, *learning_rate, param_out);
|
|
|
|
|
} else {
|
|
|
|
|
PADDLE_THROW("Unsupported Variable Type of Grad");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
} // namespace operators
|
|
|
|
|
} // namespace paddle
|
|
|
|
|