support rectangle padding, stride, window and input for PoolProjection (#115)
* support rectangle padding, stride, window and input for PoolProjection * Follow comments. 1. Remove start 2. refine img_pool_a/b.conf for test_NetworkCompare 3. Split unit test * Modify the test in img_layers.pyavx_docs
parent
8a044d2e2d
commit
191fafe355
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,46 @@
|
|||||||
|
#edit-mode: -*- python -*-
|
||||||
|
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from paddle.trainer_config_helpers import *
|
||||||
|
|
||||||
|
settings(batch_size=10)
|
||||||
|
data = data_layer(name ="input", size=8*16*16)
|
||||||
|
conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
|
||||||
|
num_channels=8,
|
||||||
|
num_filters=8,stride=1)
|
||||||
|
maxpool = img_pool_layer(input=conv,
|
||||||
|
pool_size=3,
|
||||||
|
pool_size_y=5,
|
||||||
|
num_channels=8,
|
||||||
|
stride=1,
|
||||||
|
stride_y=2,
|
||||||
|
padding=1,
|
||||||
|
padding_y=2,
|
||||||
|
img_width=16,
|
||||||
|
pool_type=MaxPooling(),
|
||||||
|
)
|
||||||
|
avgpool = img_pool_layer(input=conv,
|
||||||
|
pool_size=3,
|
||||||
|
pool_size_y=5,
|
||||||
|
num_channels=8,
|
||||||
|
stride=1,
|
||||||
|
stride_y=2,
|
||||||
|
padding=1,
|
||||||
|
padding_y=2,
|
||||||
|
img_width=16,
|
||||||
|
pool_type=AvgPooling(),
|
||||||
|
)
|
||||||
|
|
||||||
|
outputs([maxpool, avgpool])
|
@ -0,0 +1,44 @@
|
|||||||
|
#edit-mode: -*- python -*-
|
||||||
|
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from paddle.trainer_config_helpers import *
|
||||||
|
|
||||||
|
settings(batch_size=10)
|
||||||
|
data = data_layer(name ="input", size=8*16*16)
|
||||||
|
conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
|
||||||
|
num_channels=8, num_filters=8, stride=1)
|
||||||
|
maxpool = img_pool_layer(input=conv,
|
||||||
|
pool_size=3,
|
||||||
|
pool_size_y=5,
|
||||||
|
num_channels=8,
|
||||||
|
stride=1,
|
||||||
|
stride_y=2,
|
||||||
|
padding=1,
|
||||||
|
padding_y=2,
|
||||||
|
pool_type=CudnnMaxPooling(),
|
||||||
|
)
|
||||||
|
|
||||||
|
avgpool = img_pool_layer(input=conv,
|
||||||
|
pool_size=3,
|
||||||
|
pool_size_y=5,
|
||||||
|
num_channels=8,
|
||||||
|
stride=1,
|
||||||
|
stride_y=2,
|
||||||
|
padding=1,
|
||||||
|
padding_y=2,
|
||||||
|
pool_type=CudnnAvgPooling(),
|
||||||
|
)
|
||||||
|
|
||||||
|
outputs([maxpool, avgpool])
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue