Merge branch 'develop' of https://github.com/baidu/Paddle into config_parse_bug_fix

avx_docs
dangqingqing 8 years ago
commit 19735cd56e

@ -7,18 +7,14 @@
hooks:
- id: yapf
- repo: https://github.com/pre-commit/pre-commit-hooks
sha: 4ef03c4223ad322c7adaa6c6c0efb26b57df3b71
sha: 7539d8bd1a00a3c1bfd34cdb606d3a6372e83469
hooks:
- id: check-added-large-files
- id: check-merge-conflict
- id: check-symlinks
- id: detect-private-key
- id: end-of-file-fixer
# TODO(yuyang): trailing whitespace has some bugs on markdown
# files now, please not add it to pre-commit hook now
# - id: trailing-whitespace
#
# TODO(yuyang): debug-statements not fit for Paddle, because
# not all of our python code is runnable. Some are used for
# documenation
# - id: debug-statements
- repo: https://github.com/PaddlePaddle/clang-format-pre-commit-hook.git
sha: 28c0ea8a67a3e2dbbf4822ef44e85b63a0080a29
hooks:
- id: clang-formater

@ -1,10 +1,13 @@
# PaddlePaddle
[![Build Status](https://travis-ci.org/baidu/Paddle.svg?branch=master)](https://travis-ci.org/baidu/Paddle)
[![Coverage Status](https://coveralls.io/repos/github/baidu/Paddle/badge.svg?branch=develop)](https://coveralls.io/github/baidu/Paddle?branch=develop)
[![Join the chat at https://gitter.im/PaddlePaddle/Deep_Learning](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/PaddlePaddle/Deep_Learning?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
[![License](https://img.shields.io/badge/license-Apache%202.0-green.svg)](LICENSE)
[![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://www.paddlepaddle.org/)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://www.paddlepaddle.org/cn/index.html)
[![Coverage Status](https://coveralls.io/repos/github/PaddlePaddle/Paddle/badge.svg?branch=develop)](https://coveralls.io/github/PaddlePaddle/Paddle?branch=develop)
[![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
Welcome to the PaddlePaddle GitHub.
@ -14,7 +17,7 @@ developed by Baidu scientists and engineers for the purpose of applying deep
learning to many products at Baidu.
Our vision is to enable deep learning for everyone via PaddlePaddle.
Please refer to our [release announcement](https://github.com/baidu/Paddle/releases) to track the latest feature of PaddlePaddle.
Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddle/releases) to track the latest feature of PaddlePaddle.
## Features
@ -89,7 +92,7 @@ Both [English Docs](http://paddlepaddle.org/doc/) and [Chinese Docs](http://padd
## Ask Questions
You are welcome to submit questions and bug reports as [Github Issues](https://github.com/baidu/paddle/issues).
You are welcome to submit questions and bug reports as [Github Issues](https://github.com/PaddlePaddle/Paddle/issues).
## Copyright and License
PaddlePaddle is provided under the [Apache-2.0 license](LICENSE).

@ -17,24 +17,15 @@ import os
from optparse import OptionParser
def extract_dict_features(pair_file, feature_file, src_dict_file,
tgt_dict_file):
src_dict = set()
tgt_dict = set()
with open(pair_file) as fin, open(feature_file, 'w') as feature_out, open(
src_dict_file, 'w') as src_dict_out, open(tgt_dict_file,
'w') as tgt_dict_out:
def extract_dict_features(pair_file, feature_file):
with open(pair_file) as fin, open(feature_file, 'w') as feature_out:
for line in fin:
sentence, labels = line.strip().split('\t')
sentence, predicate, labels = line.strip().split('\t')
sentence_list = sentence.split()
labels_list = labels.split()
src_dict.update(sentence_list)
tgt_dict.update(labels_list)
verb_index = labels_list.index('B-V')
verb_feature = sentence_list[verb_index]
mark = [0] * len(labels_list)
if verb_index > 0:
@ -42,47 +33,50 @@ def extract_dict_features(pair_file, feature_file, src_dict_file,
ctx_n1 = sentence_list[verb_index - 1]
else:
ctx_n1 = 'bos'
ctx_n1_feature = ctx_n1
if verb_index > 1:
mark[verb_index - 2] = 1
ctx_n2 = sentence_list[verb_index - 2]
else:
ctx_n2 = 'bos'
mark[verb_index] = 1
ctx_0_feature = sentence_list[verb_index]
ctx_0 = sentence_list[verb_index]
if verb_index < len(labels_list) - 2:
mark[verb_index + 1] = 1
ctx_p1 = sentence_list[verb_index + 1]
else:
ctx_p1 = 'eos'
ctx_p1_feature = ctx_p1
if verb_index < len(labels_list) - 3:
mark[verb_index + 2] = 1
ctx_p2 = sentence_list[verb_index + 2]
else:
ctx_p2 = 'eos'
feature_str = sentence + '\t' \
+ verb_feature + '\t' \
+ ctx_n1_feature + '\t' \
+ ctx_0_feature + '\t' \
+ ctx_p1_feature + '\t' \
+ predicate + '\t' \
+ ctx_n2 + '\t' \
+ ctx_n1 + '\t' \
+ ctx_0 + '\t' \
+ ctx_p1 + '\t' \
+ ctx_p2 + '\t' \
+ ' '.join([str(i) for i in mark]) + '\t' \
+ labels
feature_out.write(feature_str + '\n')
src_dict_out.write('<unk>\n')
src_dict_out.write('\n'.join(list(src_dict)))
tgt_dict_out.write('\n'.join(list(tgt_dict)))
if __name__ == '__main__':
usage = '-p pair_file -f feature_file -s source dictionary -t target dictionary '
usage = '-p pair_file -f feature_file'
parser = OptionParser(usage)
parser.add_option('-p', dest='pair_file', help='the pair file')
parser.add_option(
'-f', dest='feature_file', help='the file to store feature')
parser.add_option(
'-s', dest='src_dict', help='the file to store source dictionary')
parser.add_option(
'-t', dest='tgt_dict', help='the file to store target dictionary')
parser.add_option('-f', dest='feature_file', help='the feature file')
(options, args) = parser.parse_args()
extract_dict_features(options.pair_file, options.feature_file,
options.src_dict, options.tgt_dict)
extract_dict_features(options.pair_file, options.feature_file)

@ -51,7 +51,7 @@ def read_sentences(words_file):
for line in fin:
line = line.strip()
if line == '':
sentences.append(s.lower())
sentences.append(s)
s = ''
else:
s += line + ' '
@ -64,6 +64,11 @@ def transform_labels(sentences, labels):
if len(labels[i]) == 1:
continue
else:
verb_list = []
for x in labels[i][0]:
if x !='-':
verb_list.append(x)
for j in xrange(1, len(labels[i])):
label_list = labels[i][j]
current_tag = 'O'
@ -88,8 +93,7 @@ def transform_labels(sentences, labels):
is_in_bracket = True
else:
print 'error:', ll
sen_lab_pair.append((sentences[i], label_seq))
sen_lab_pair.append((sentences[i], verb_list[j-1], label_seq))
return sen_lab_pair
@ -97,9 +101,9 @@ def write_file(sen_lab_pair, output_file):
with open(output_file, 'w') as fout:
for x in sen_lab_pair:
sentence = x[0]
label_seq = ' '.join(x[1])
assert len(sentence.split()) == len(x[1])
fout.write(sentence + '\t' + label_seq + '\n')
label_seq = ' '.join(x[2])
assert len(sentence.split()) == len(x[2])
fout.write(sentence + '\t' + x[1]+'\t' +label_seq + '\n')
if __name__ == '__main__':

@ -14,6 +14,10 @@
# limitations under the License.
set -e
wget http://www.cs.upc.edu/~srlconll/conll05st-tests.tar.gz
wget https://www.googledrive.com/host/0B7Q8d52jqeI9ejh6Q1RpMTFQT1k/semantic_role_labeling/verbDict.txt --no-check-certificate
wget https://www.googledrive.com/host/0B7Q8d52jqeI9ejh6Q1RpMTFQT1k/semantic_role_labeling/targetDict.txt --no-check-certificate
wget https://www.googledrive.com/host/0B7Q8d52jqeI9ejh6Q1RpMTFQT1k/semantic_role_labeling/wordDict.txt --no-check-certificate
wget https://www.googledrive.com/host/0B7Q8d52jqeI9ejh6Q1RpMTFQT1k/semantic_role_labeling/emb --no-check-certificate
tar -xzvf conll05st-tests.tar.gz
rm conll05st-tests.tar.gz
cp ./conll05st-release/test.wsj/words/test.wsj.words.gz .
@ -22,4 +26,4 @@ gunzip test.wsj.words.gz
gunzip test.wsj.props.gz
python extract_pairs.py -w test.wsj.words -p test.wsj.props -o test.wsj.seq_pair
python extract_dict_feature.py -p test.wsj.seq_pair -f feature -s src.dict -t tgt.dict
python extract_dict_feature.py -p test.wsj.seq_pair -f feature

@ -17,11 +17,15 @@ from paddle.trainer.PyDataProvider2 import *
UNK_IDX = 0
def hook(settings, word_dict, label_dict, **kwargs):
def hook(settings, word_dict, label_dict, predicate_dict, **kwargs):
settings.word_dict = word_dict
settings.label_dict = label_dict
settings.predicate_dict = predicate_dict
#all inputs are integral and sequential type
settings.slots = [
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(predicate_dict)),
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)),
@ -31,27 +35,33 @@ def hook(settings, word_dict, label_dict, **kwargs):
]
@provider(init_hook=hook)
def process(obj, file_name):
def get_batch_size(yeild_data):
return len(yeild_data[0])
@provider(init_hook=hook, should_shuffle=True, calc_batch_size=get_batch_size,
can_over_batch_size=False, cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, file_name):
with open(file_name, 'r') as fdata:
for line in fdata:
sentence, predicate, ctx_n1, ctx_0, ctx_p1, mark, label = \
sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = \
line.strip().split('\t')
words = sentence.split()
sen_len = len(words)
word_slot = [obj.word_dict.get(w, UNK_IDX) for w in words]
word_slot = [settings.word_dict.get(w, UNK_IDX) for w in words]
predicate_slot = [obj.word_dict.get(predicate, UNK_IDX)] * sen_len
ctx_n1_slot = [obj.word_dict.get(ctx_n1, UNK_IDX)] * sen_len
ctx_0_slot = [obj.word_dict.get(ctx_0, UNK_IDX)] * sen_len
ctx_p1_slot = [obj.word_dict.get(ctx_p1, UNK_IDX)] * sen_len
predicate_slot = [settings.predicate_dict.get(predicate)] * sen_len
ctx_n2_slot = [settings.word_dict.get(ctx_n2, UNK_IDX)] * sen_len
ctx_n1_slot = [settings.word_dict.get(ctx_n1, UNK_IDX)] * sen_len
ctx_0_slot = [settings.word_dict.get(ctx_0, UNK_IDX)] * sen_len
ctx_p1_slot = [settings.word_dict.get(ctx_p1, UNK_IDX)] * sen_len
ctx_p2_slot = [settings.word_dict.get(ctx_p2, UNK_IDX)] * sen_len
marks = mark.split()
mark_slot = [int(w) for w in marks]
label_list = label.split()
label_slot = [obj.label_dict.get(w) for w in label_list]
yield word_slot, predicate_slot, ctx_n1_slot, \
ctx_0_slot, ctx_p1_slot, mark_slot, label_slot
label_slot = [settings.label_dict.get(w) for w in label_list]
yield word_slot, predicate_slot, ctx_n2_slot, ctx_n1_slot, \
ctx_0_slot, ctx_p1_slot, ctx_p2_slot, mark_slot, label_slot

@ -18,8 +18,9 @@ import sys
from paddle.trainer_config_helpers import *
#file paths
word_dict_file = './data/src.dict'
label_dict_file = './data/tgt.dict'
word_dict_file = './data/wordDict.txt'
label_dict_file = './data/targetDict.txt'
predicate_file= './data/verbDict.txt'
train_list_file = './data/train.list'
test_list_file = './data/test.list'
@ -30,8 +31,10 @@ if not is_predict:
#load dictionaries
word_dict = dict()
label_dict = dict()
predicate_dict = dict()
with open(word_dict_file, 'r') as f_word, \
open(label_dict_file, 'r') as f_label:
open(label_dict_file, 'r') as f_label, \
open(predicate_file, 'r') as f_pre:
for i, line in enumerate(f_word):
w = line.strip()
word_dict[w] = i
@ -40,6 +43,11 @@ if not is_predict:
w = line.strip()
label_dict[w] = i
for i, line in enumerate(f_pre):
w = line.strip()
predicate_dict[w] = i
if is_test:
train_list_file = None
@ -50,91 +58,157 @@ if not is_predict:
module='dataprovider',
obj='process',
args={'word_dict': word_dict,
'label_dict': label_dict})
'label_dict': label_dict,
'predicate_dict': predicate_dict })
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(predicate_dict)
else:
word_dict_len = get_config_arg('dict_len', int)
label_dict_len = get_config_arg('label_len', int)
pred_len = get_config_arg('pred_len', int)
############################## Hyper-parameters ##################################
mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 128
hidden_dim = 512
depth = 8
emb_lr = 1e-2
fc_lr = 1e-2
lstm_lr = 2e-2
########################### Optimizer #######################################
settings(
batch_size=150,
learning_method=AdamOptimizer(),
learning_rate=1e-3,
learning_method=MomentumOptimizer(momentum=0),
learning_rate=2e-2,
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25)
is_async=False,
model_average=ModelAverage(average_window=0.5,
max_average_window=10000),
)
#6 features
####################################### network ##############################
#8 features and 1 target
word = data_layer(name='word_data', size=word_dict_len)
predicate = data_layer(name='verb_data', size=word_dict_len)
predicate = data_layer(name='verb_data', size=pred_len)
ctx_n2 = data_layer(name='ctx_n2_data', size=word_dict_len)
ctx_n1 = data_layer(name='ctx_n1_data', size=word_dict_len)
ctx_0 = data_layer(name='ctx_0_data', size=word_dict_len)
ctx_p1 = data_layer(name='ctx_p1_data', size=word_dict_len)
ctx_p2 = data_layer(name='ctx_p2_data', size=word_dict_len)
mark = data_layer(name='mark_data', size=mark_dict_len)
if not is_predict:
target = data_layer(name='target', size=label_dict_len)
ptt = ParameterAttribute(name='src_emb', learning_rate=emb_lr)
layer_attr = ExtraLayerAttribute(drop_rate=0.5)
fc_para_attr = ParameterAttribute(learning_rate=fc_lr)
lstm_para_attr = ParameterAttribute(initial_std=0., learning_rate=lstm_lr)
para_attr = [fc_para_attr, lstm_para_attr]
word_embedding = embedding_layer(size=word_dim, input=word, param_attr=ptt)
predicate_embedding = embedding_layer(
size=word_dim, input=predicate, param_attr=ptt)
ctx_n1_embedding = embedding_layer(size=word_dim, input=ctx_n1, param_attr=ptt)
ctx_0_embedding = embedding_layer(size=word_dim, input=ctx_0, param_attr=ptt)
ctx_p1_embedding = embedding_layer(size=word_dim, input=ctx_p1, param_attr=ptt)
mark_embedding = embedding_layer(size=mark_dim, input=mark)
default_std=1/math.sqrt(hidden_dim)/3.0
emb_para = ParameterAttribute(name='emb', initial_std=0., learning_rate=0.)
std_0 = ParameterAttribute(initial_std=0.)
std_default = ParameterAttribute(initial_std=default_std)
predicate_embedding = embedding_layer(size=word_dim, input=predicate, param_attr=ParameterAttribute(name='vemb',initial_std=default_std))
mark_embedding = embedding_layer(name='word_ctx-in_embedding', size=mark_dim, input=mark, param_attr=std_0)
word_input=[word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [embedding_layer(size=word_dim, input=x, param_attr=emb_para) for x in word_input]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
hidden_0 = mixed_layer(
name='hidden0',
size=hidden_dim,
input=[
full_matrix_projection(input=word_embedding),
full_matrix_projection(input=predicate_embedding),
full_matrix_projection(input=ctx_n1_embedding),
full_matrix_projection(input=ctx_0_embedding),
full_matrix_projection(input=ctx_p1_embedding),
full_matrix_projection(input=mark_embedding),
])
bias_attr=std_default,
input=[ full_matrix_projection(input=emb, param_attr=std_default ) for emb in emb_layers ])
lstm_0 = lstmemory(input=hidden_0, layer_attr=layer_attr)
mix_hidden_lr = 1e-3
lstm_para_attr = ParameterAttribute(initial_std=0.0, learning_rate=1.0)
hidden_para_attr = ParameterAttribute(initial_std=default_std, learning_rate=mix_hidden_lr)
lstm_0 = lstmemory(name='lstm0',
input=hidden_0,
act=ReluActivation(),
gate_act=SigmoidActivation(),
state_act=SigmoidActivation(),
bias_attr=std_0,
param_attr=lstm_para_attr)
#stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]
for i in range(1, depth):
fc = fc_layer(input=input_tmp, size=hidden_dim, param_attr=para_attr)
mix_hidden = mixed_layer(name='hidden'+str(i),
size=hidden_dim,
bias_attr=std_default,
input=[full_matrix_projection(input=input_tmp[0], param_attr=hidden_para_attr),
full_matrix_projection(input=input_tmp[1], param_attr=lstm_para_attr)
]
)
lstm = lstmemory(name='lstm'+str(i),
input=mix_hidden,
act=ReluActivation(),
gate_act=SigmoidActivation(),
state_act=SigmoidActivation(),
reverse=((i % 2)==1),
bias_attr=std_0,
param_attr=lstm_para_attr)
input_tmp = [mix_hidden, lstm]
feature_out = mixed_layer(name='output',
size=label_dict_len,
bias_attr=std_default,
input=[full_matrix_projection(input=input_tmp[0], param_attr=hidden_para_attr),
full_matrix_projection(input=input_tmp[1], param_attr=lstm_para_attr)
],
)
lstm = lstmemory(
input=fc,
act=ReluActivation(),
reverse=(i % 2) == 1,
layer_attr=layer_attr)
input_tmp = [fc, lstm]
prob = fc_layer(
input=input_tmp,
size=label_dict_len,
act=SoftmaxActivation(),
param_attr=para_attr)
if not is_predict:
cls = classification_cost(input=prob, label=target)
outputs(cls)
crf_l = crf_layer( name = 'crf',
size = label_dict_len,
input = feature_out,
label = target,
param_attr=ParameterAttribute(name='crfw',initial_std=default_std, learning_rate=mix_hidden_lr)
)
crf_dec_l = crf_decoding_layer(name = 'crf_dec_l',
size = label_dict_len,
input = feature_out,
label = target,
param_attr=ParameterAttribute(name='crfw')
)
eval = sum_evaluator(input=crf_dec_l)
outputs(crf_l)
else:
outputs(prob)
crf_dec_l = crf_decoding_layer(name = 'crf_dec_l',
size = label_dict_len,
input = feature_out,
param_attr=ParameterAttribute(name='crfw')
)
outputs(crf_dec_l)

@ -26,7 +26,7 @@ UNK_IDX = 0
class Prediction():
def __init__(self, train_conf, dict_file, model_dir, label_file):
def __init__(self, train_conf, dict_file, model_dir, label_file, predicate_dict_file):
"""
train_conf: trainer configure.
dict_file: word dictionary file name.
@ -35,26 +35,41 @@ class Prediction():
self.dict = {}
self.labels = {}
self.predicate_dict={}
self.labels_reverse = {}
self.load_dict_label(dict_file, label_file)
self.load_dict_label(dict_file, label_file, predicate_dict_file)
len_dict = len(self.dict)
len_label = len(self.labels)
conf = parse_config(train_conf, 'dict_len=' + str(len_dict) +
',label_len=' + str(len_label) + ',is_predict=True')
len_pred = len(self.predicate_dict)
conf = parse_config(
train_conf,
'dict_len=' + str(len_dict) +
',label_len=' + str(len_label) +
',pred_len=' + str(len_pred) +
',is_predict=True')
self.network = swig_paddle.GradientMachine.createFromConfigProto(
conf.model_config)
self.network.loadParameters(model_dir)
slots = [
integer_value_sequence(len_dict),
integer_value_sequence(len_pred),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(2)
]
integer_value_sequence(len_dict), integer_value_sequence(len_dict),
integer_value_sequence(len_dict), integer_value_sequence(len_dict),
integer_value_sequence(len_dict), integer_value_sequence(2)
]
self.converter = DataProviderConverter(slots)
def load_dict_label(self, dict_file, label_file):
def load_dict_label(self, dict_file, label_file, predicate_dict_file):
"""
Load dictionary from self.dict_file.
"""
@ -65,39 +80,42 @@ class Prediction():
self.labels[line.strip()] = line_count
self.labels_reverse[line_count] = line.strip()
for line_count, line in enumerate(open(predicate_dict_file, 'r')):
self.predicate_dict[line.strip()] = line_count
def get_data(self, data_file):
"""
Get input data of paddle format.
"""
with open(data_file, 'r') as fdata:
for line in fdata:
sentence, predicate, ctx_n1, ctx_0, ctx_p1, mark, label = line.strip(
sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = line.strip(
).split('\t')
words = sentence.split()
sen_len = len(words)
word_slot = [self.dict.get(w, UNK_IDX) for w in words]
predicate_slot = [self.dict.get(predicate, UNK_IDX)] * sen_len
predicate_slot = [self.predicate_dict.get(predicate, UNK_IDX)] * sen_len
ctx_n2_slot = [self.dict.get(ctx_n2, UNK_IDX)] * sen_len
ctx_n1_slot = [self.dict.get(ctx_n1, UNK_IDX)] * sen_len
ctx_0_slot = [self.dict.get(ctx_0, UNK_IDX)] * sen_len
ctx_p1_slot = [self.dict.get(ctx_p1, UNK_IDX)] * sen_len
ctx_p2_slot = [self.dict.get(ctx_p2, UNK_IDX)] * sen_len
marks = mark.split()
mark_slot = [int(w) for w in marks]
yield word_slot, predicate_slot, ctx_n1_slot, \
ctx_0_slot, ctx_p1_slot, mark_slot
yield word_slot, predicate_slot, ctx_n2_slot, ctx_n1_slot, \
ctx_0_slot, ctx_p1_slot, ctx_p2_slot, mark_slot
def predict(self, data_file):
def predict(self, data_file, output_file):
"""
data_file: file name of input data.
"""
input = self.converter(self.get_data(data_file))
output = self.network.forwardTest(input)
prob = output[0]["value"]
lab = list(np.argsort(-prob)[:, 0])
lab = output[0]["id"].tolist()
with open(data_file, 'r') as fin, open('predict.res', 'w') as fout:
with open(data_file, 'r') as fin, open(output_file, 'w') as fout:
index = 0
for line in fin:
sen = line.split('\t')[0]
@ -110,7 +128,7 @@ class Prediction():
def option_parser():
usage = ("python predict.py -c config -w model_dir "
"-d word dictionary -l label_file -i input_file")
"-d word dictionary -l label_file -i input_file -p pred_dict_file")
parser = OptionParser(usage="usage: %s [options]" % usage)
parser.add_option(
"-c",
@ -131,6 +149,13 @@ def option_parser():
dest="label_file",
default=None,
help="label file")
parser.add_option(
"-p",
"--predict_dict_file",
action="store",
dest="predict_dict_file",
default=None,
help="predict_dict_file")
parser.add_option(
"-i",
"--data",
@ -144,6 +169,14 @@ def option_parser():
dest="model_path",
default=None,
help="model path")
parser.add_option(
"-o",
"--output_file",
action="store",
dest="output_file",
default=None,
help="output file")
return parser.parse_args()
@ -154,10 +187,12 @@ def main():
dict_file = options.dict_file
model_path = options.model_path
label_file = options.label_file
predict_dict_file = options.predict_dict_file
output_file = options.output_file
swig_paddle.initPaddle("--use_gpu=0")
predict = Prediction(train_conf, dict_file, model_path, label_file)
predict.predict(data_file)
predict = Prediction(train_conf, dict_file, model_path, label_file, predict_dict_file)
predict.predict(data_file,output_file)
if __name__ == '__main__':

@ -26,15 +26,18 @@ LOG=`get_best_pass $log`
LOG=(${LOG})
best_model_path="output/pass-${LOG[1]}"
config_file=db_lstm.py
dict_file=./data/src.dict
label_file=./data/tgt.dict
dict_file=./data/wordDict.txt
label_file=./data/targetDict.txt
predicate_dict_file=./data/verbDict.txt
input_file=./data/feature
output_file=predict.res
python predict.py \
-c $config_file \
-w $best_model_path \
-l $label_file \
-p $predicate_dict_file \
-d $dict_file \
-i $input_file
-i $input_file \
-o $output_file

@ -36,4 +36,5 @@ paddle train \
--job=test \
--use_gpu=false \
--config_args=is_test=1 \
--test_all_data_in_one_period=1 \
2>&1 | tee 'test.log'

@ -16,11 +16,14 @@
set -e
paddle train \
--config=./db_lstm.py \
--use_gpu=0 \
--log_period=5000 \
--trainer_count=1 \
--show_parameter_stats_period=5000 \
--save_dir=./output \
--trainer_count=4 \
--log_period=10 \
--num_passes=500 \
--use_gpu=false \
--show_parameter_stats_period=10 \
--num_passes=10000 \
--average_test_period=10000000 \
--init_model_path=./data \
--load_missing_parameter_strategy=rand \
--test_all_data_in_one_period=1 \
2>&1 | tee 'train.log'
2>&1 | tee 'train.log'

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

@ -30,8 +30,6 @@ Several new files appear in the `data `directory as follows.
conll05st-releasethe test data set of CoNll-2005 shared task
test.wsj.wordsthe Wall Street Journal data sentences
test.wsj.props: the propositional arguments
src.dictthe dictionary of words in sentences
tgt.dictthe labels dictionary
feature: the extracted features from data set
```
@ -67,6 +65,8 @@ def hook(settings, word_dict, label_dict, **kwargs):
settings.label_dict = label_dict
#all inputs are integral and sequential type
settings.slots = [
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(predicate_dict)),
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)),
@ -77,34 +77,39 @@ def hook(settings, word_dict, label_dict, **kwargs):
```
The corresponding data iterator is as following:
```
@provider(use_seq=True, init_hook=hook)
def process(obj, file_name):
@provider(init_hook=hook, should_shuffle=True, calc_batch_size=get_batch_size,
can_over_batch_size=False, cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, file_name):
with open(file_name, 'r') as fdata:
for line in fdata:
sentence, predicate, ctx_n1, ctx_0, ctx_p1, mark, label = line.strip().split('\t')
sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = \
line.strip().split('\t')
words = sentence.split()
sen_len = len(words)
word_slot = [obj.word_dict.get(w, UNK_IDX) for w in words]
word_slot = [settings.word_dict.get(w, UNK_IDX) for w in words]
predicate_slot = [obj.word_dict.get(predicate, UNK_IDX)] * sen_len
ctx_n1_slot = [obj.word_dict.get(ctx_n1, UNK_IDX) ] * sen_len
ctx_0_slot = [obj.word_dict.get(ctx_0, UNK_IDX) ] * sen_len
ctx_p1_slot = [obj.word_dict.get(ctx_p1, UNK_IDX) ] * sen_len
predicate_slot = [settings.predicate_dict.get(predicate)] * sen_len
ctx_n2_slot = [settings.word_dict.get(ctx_n2, UNK_IDX)] * sen_len
ctx_n1_slot = [settings.word_dict.get(ctx_n1, UNK_IDX)] * sen_len
ctx_0_slot = [settings.word_dict.get(ctx_0, UNK_IDX)] * sen_len
ctx_p1_slot = [settings.word_dict.get(ctx_p1, UNK_IDX)] * sen_len
ctx_p2_slot = [settings.word_dict.get(ctx_p2, UNK_IDX)] * sen_len
marks = mark.split()
mark_slot = [int(w) for w in marks]
label_list = label.split()
label_slot = [obj.label_dict.get(w) for w in label_list]
yield word_slot, predicate_slot, ctx_n1_slot, ctx_0_slot, ctx_p1_slot, mark_slot, label_slot
label_slot = [settings.label_dict.get(w) for w in label_list]
yield word_slot, predicate_slot, ctx_n2_slot, ctx_n1_slot, \
ctx_0_slot, ctx_p1_slot, ctx_p2_slot, mark_slot, label_slot
```
The `process`function yield 7 lists which are six features and labels.
The `process`function yield 9 lists which are 8 features and label.
### Neural Network Config
`db_lstm.py` is the neural network config file to load the dictionaries and define the data provider module and network architecture during the training procedure.
Seven `data_layer` load instances from data provider. Six features are transformed into embedddings respectively, and mixed by `mixed_layer` . Deep bidirectional LSTM layers extract features for the softmax layer. The objective function is cross entropy of labels.
Nine `data_layer` load instances from data provider. Eight features are transformed into embedddings respectively, and mixed by `mixed_layer` . Deep bidirectional LSTM layers extract features for the softmax layer. The objective function is cross entropy of labels.
### Run Training
The script for training is `train.sh`, user just need to execute:
@ -115,27 +120,36 @@ The content in `train.sh`:
```
paddle train \
--config=./db_lstm.py \
--use_gpu=0 \
--log_period=5000 \
--trainer_count=1 \
--show_parameter_stats_period=5000 \
--save_dir=./output \
--trainer_count=4 \
--log_period=10 \
--num_passes=500 \
--use_gpu=false \
--show_parameter_stats_period=10 \
--num_passes=10000 \
--average_test_period=10000000 \
--init_model_path=./data \
--load_missing_parameter_strategy=rand \
--test_all_data_in_one_period=1 \
2>&1 | tee 'train.log'
```
- \--config=./db_lstm.py : network config file.
- \--save_di=./output: output path to save models.
- \--trainer_count=4 : set thread number (or GPU count).
- \--log_period=10 : print log every 20 batches.
- \--num_passes=500: set pass number, one pass in PaddlePaddle means training all samples in dataset one time.
- \--use_gpu=false: use CPU to train, set true, if you install GPU version of PaddlePaddle and want to use GPU to train.
- \--show_parameter_stats_period=10: show parameter statistic every 100 batches.
- \--test_all_data_in_one_period=1: test all data in every testing.
After training, the models will be saved in directory `output`.
- \--use_gpu=false: use CPU to train, set true, if you install GPU version of PaddlePaddle and want to use GPU to train, until now crf_layer do not support GPU
- \--log_period=500: print log every 20 batches.
- \--trainer_count=1: set thread number (or GPU count).
- \--show_parameter_stats_period=5000: show parameter statistic every 100 batches.
- \--save_dir=./output: output path to save models.
- \--num_passes=10000: set pass number, one pass in PaddlePaddle means training all samples in dataset one time.
- \--average_test_period=10000000: do test on average parameter every average_test_period batches
- \--init_model_path=./data: parameter initialization path
- \--load_missing_parameter_strategy=rand: random initialization unexisted parameters
- \--test_all_data_in_one_period=1: test all data in one period
After training, the models will be saved in directory `output`. Our training curve is as following:
<center>
![pic](./curve.jpg)
</center>
### Run testing
The script for testing is `test.sh`, user just need to execute:
@ -155,6 +169,7 @@ paddle train \
- \--model_list=$model_list.list: model list file
- \--job=test: indicate the test job
- \--config_args=is_test=1: flag to indicate test
- \--test_all_data_in_one_period=1: test all data in 1 period
### Run prediction
@ -166,11 +181,13 @@ The script for prediction is `predict.sh`, user just need to execute:
In `predict.sh`, user should offer the network config file, model path, label file, word dictionary file, feature file
```
python predict.py
-c $config_file
-w $model_path
-l $label_file
-d $dict_file
-i $input_file
-c $config_file \
-w $best_model_path \
-l $label_file \
-p $predicate_dict_file \
-d $dict_file \
-i $input_file \
-o $output_file
```
`predict.py` is the main executable python script, which includes functions: load model, load data, data prediction. The network model will output the probability distribution of labels. In the demo, we take the label with maximum probability as result. User can also implement the beam search or viterbi decoding upon the probability distribution matrix.

@ -81,5 +81,8 @@ else()
add_library(paddle_cuda ${CUDA_SOURCES})
endif()
add_style_check_target(paddle_cuda ${CUDA_SOURCES})
add_style_check_target(paddle_cuda ${CUDA_HEADERS})
add_style_check_target(paddle_cuda
${CUDA_SOURCES}
${CUDA_HEADERS}
${CUDA_DSO_SOURCES}
${CUDA_CXX_WITH_GPU_SOURCES})

@ -104,7 +104,7 @@ CUBLAS_BLAS_ROUTINE_EACH(DYNAMIC_LOAD_CUBLAS_V2_WRAP)
#endif
const char* hl_cublas_get_error_string(cublasStatus_t status) {
switch(status) {
switch (status) {
case CUBLAS_STATUS_NOT_INITIALIZED:
return "[cublas status]: not initialized";
case CUBLAS_STATUS_ALLOC_FAILED:
@ -181,7 +181,7 @@ void hl_matrix_inverse(real *A_d, real *C_d, int dimN, int lda, int ldc) {
real **inout_d = (real **)hl_malloc_device(sizeof(real *));
hl_memcpy(inout_d, inout_h, sizeof(real *));
int *pivot_d = (int *)hl_malloc_device(dimN*sizeof(int));
int *pivot_d = (int *)hl_malloc_device(dimN * sizeof(int));
int *info_d = (int *)t_resource.gpu_mem;
/* Note: cublasSgetrfBatched is used to calculate a number of
@ -189,8 +189,7 @@ void hl_matrix_inverse(real *A_d, real *C_d, int dimN, int lda, int ldc) {
the API for better performance.
*/
CHECK_CUBLAS(CUBLAS_GETRF(t_resource.handle,
dimN, inout_d, lda, pivot_d,
info_d, 1));
dimN, inout_d, lda, pivot_d, info_d, 1));
int info_h;
hl_memcpy(&info_h, info_d, sizeof(int));
@ -204,8 +203,8 @@ void hl_matrix_inverse(real *A_d, real *C_d, int dimN, int lda, int ldc) {
hl_memcpy(out_d, out_h, sizeof(real *));
CHECK_CUBLAS(CUBLAS_GETRI(t_resource.handle,
dimN, (const real **)inout_d, lda, pivot_d,
out_d, ldc, info_d, 1));
dimN, (const real **)inout_d, lda, pivot_d,
out_d, ldc, info_d, 1));
hl_memcpy(&info_h, info_d, sizeof(int));
if (info_h != 0) {

File diff suppressed because it is too large Load Diff

@ -203,7 +203,7 @@ inline pid_t gettid() {
#endif
pid_t tid = syscall(__NR_gettid);
#endif
CHECK_NE(tid, -1);
CHECK_NE((int)tid, -1);
return tid;
}
@ -355,7 +355,8 @@ void* hl_malloc_host(size_t size) {
void *dest_h;
CHECK(size) << __func__ << ": the size for device memory is 0, please check.";
CHECK_CUDA(dynload::cudaHostAlloc((void**)&dest_h, size, cudaHostAllocDefault));
CHECK_CUDA(dynload::cudaHostAlloc(
(void**)&dest_h, size, cudaHostAllocDefault));
return dest_h;
}
@ -364,7 +365,7 @@ void hl_free_mem_host(void *dest_h) {
CHECK_NOTNULL(dest_h);
cudaError_t err = dynload::cudaFreeHost(dest_h);
CHECK (cudaSuccess == err || cudaErrorCudartUnloading == err)
CHECK(cudaSuccess == err || cudaErrorCudartUnloading == err)
<< hl_get_device_error_string();
}
@ -502,7 +503,8 @@ int hl_get_cuda_version() {
return g_cuda_lib_version;
}
void hl_create_thread_resources(int device, thread_device_resources device_res) {
void hl_create_thread_resources(int device,
thread_device_resources device_res) {
CHECK_CUDA(dynload::cudaSetDevice(device));
/* create thread stream */

@ -78,48 +78,38 @@ __host__ cudaError_t CUDARTAPI cudaLaunchKernel(const void *func,
dim3 blockDim,
void **args,
size_t sharedMem,
cudaStream_t stream)
{
return dynload::cudaLaunchKernel(func, gridDim, blockDim, args, sharedMem, stream);
cudaStream_t stream) {
return dynload::cudaLaunchKernel(func, gridDim, blockDim,
args, sharedMem, stream);
}
#endif /* CUDART_VERSION >= 7000 */
__host__ cudaError_t CUDARTAPI cudaLaunch(const void *func)
{
__host__ cudaError_t CUDARTAPI cudaLaunch(const void *func) {
return dynload::cudaLaunch(func);
}
__host__ cudaError_t CUDARTAPI cudaSetupArgument(const void *arg,
size_t size,
size_t offset)
{
size_t offset) {
return dynload::cudaSetupArgument(arg, size, offset);
}
__host__ cudaError_t CUDARTAPI cudaConfigureCall(dim3 gridDim,
dim3 blockDim,
size_t sharedMem,
cudaStream_t stream)
{
cudaStream_t stream) {
return dynload::cudaConfigureCall(gridDim, blockDim,
sharedMem, stream);
}
extern "C" {
void** CUDARTAPI __cudaRegisterFatBinary(
void *fatCubin
)
{
void** CUDARTAPI __cudaRegisterFatBinary(void *fatCubin) {
return dynload::__cudaRegisterFatBinary(fatCubin);
}
void CUDARTAPI __cudaUnregisterFatBinary(
void **fatCubinHandle
)
{
void CUDARTAPI __cudaUnregisterFatBinary(void **fatCubinHandle) {
return dynload::__cudaUnregisterFatBinary(fatCubinHandle);
}

@ -12,27 +12,28 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "hl_dso_loader.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/CommandLineParser.h"
#include "paddle/utils/Logging.h"
P_DEFINE_string(cudnn_dir, "",
P_DEFINE_string(cudnn_dir,
"",
"Specify path for loading libcudnn.so. For instance, "
"/usr/local/cudnn/lib64. If empty [default], dlopen will search "
"cudnn from LD_LIBRARY_PATH");
"/usr/local/cudnn/lib. If empty [default], dlopen "
"will search cudnn from LD_LIBRARY_PATH");
P_DEFINE_string(cuda_dir, "",
P_DEFINE_string(cuda_dir,
"",
"Specify path for loading cuda library, such as libcublas, "
"libcurand. For instance, /usr/local/cuda/lib64. "
"(Note: libcudart can not be specified by cuda_dir, since some "
"libcurand. For instance, /usr/local/cuda/lib64. (Note: "
"libcudart can not be specified by cuda_dir, since some "
"build-in function in cudart already ran before main entry). "
"If empty [default], dlopen will search cuda from LD_LIBRARY_PATH");
"If default, dlopen will search cuda from LD_LIBRARY_PATH");
static inline std::string join(const std::string& part1, const std::string& part2) {
static inline std::string join(const std::string& part1,
const std::string& part2) {
// directory separator
const char sep = '/';
if (!part2.empty() && part2.front() == sep) {
return part2;
}
@ -46,100 +47,115 @@ static inline std::string join(const std::string& part1, const std::string& part
return ret;
}
static inline void GetDsoHandleFromDefaultPath(
std::string& dso_path, void** dso_handle, int dynload_flags) {
VLOG(3) << "Try to find cuda library: " << dso_path
<< " from default system path.";
// default search from LD_LIBRARY_PATH/DYLD_LIBRARY_PATH
static inline void GetDsoHandleFromDefaultPath(std::string& dso_path,
void** dso_handle,
int dynload_flags) {
VLOG(3) << "Try to find cuda library: " << dso_path
<< " from default system path.";
// default search from LD_LIBRARY_PATH/DYLD_LIBRARY_PATH
*dso_handle = dlopen(dso_path.c_str(), dynload_flags);
// DYLD_LIBRARY_PATH is disabled after Mac OS 10.11 to
// bring System Integrity Projection (SIP), if dso_handle
// is null, search from default package path in Mac OS.
#if defined(__APPLE__) || defined(__OSX__)
if (nullptr == *dso_handle) {
dso_path = join("/usr/local/cuda/lib/", dso_path);
*dso_handle = dlopen(dso_path.c_str(), dynload_flags);
// DYLD_LIBRARY_PATH is disabled after Mac OS 10.11 to
// bring System Integrity Projection (SIP), if dso_handle
// is null, search from default package path in Mac OS.
#if defined(__APPLE__) || defined(__OSX__)
if (nullptr == *dso_handle) {
dso_path = join("/usr/local/cuda/lib/", dso_path);
*dso_handle = dlopen(dso_path.c_str(), dynload_flags);
if (nullptr == *dso_handle) {
if (dso_path == "libcudnn.dylib") {
LOG(FATAL) << "Note: [Recommend] copy cudnn into /usr/local/cuda/ \n"
<< "For instance, sudo tar -xzf cudnn-7.5-osx-x64-v5.0-ga.tgz -C "
<< "/usr/local \n sudo chmod a+r /usr/local/cuda/include/cudnn.h "
<< "/usr/local/cuda/lib/libcudnn*";
}
}
if (dso_path == "libcudnn.dylib") {
LOG(FATAL)
<< "Note: [Recommend] copy cudnn into /usr/local/cuda/ \n" // NOLINT
<< "For instance, sudo tar -xzf "
"cudnn-7.5-osx-x64-v5.0-ga.tgz -C " // NOLINT
<< "/usr/local \n sudo chmod a+r "
"/usr/local/cuda/include/cudnn.h " // NOLINT
<< "/usr/local/cuda/lib/libcudnn*";
}
}
#endif
}
#endif
}
static inline void GetDsoHandleFromSearchPath(
const std::string& search_root,
const std::string& dso_name,
void** dso_handle) {
int dynload_flags = RTLD_LAZY | RTLD_LOCAL;
*dso_handle = nullptr;
std::string dlPath = dso_name;
if (search_root.empty()) {
GetDsoHandleFromDefaultPath(dlPath, dso_handle, dynload_flags);
} else {
// search xxx.so from custom path
dlPath = join(search_root, dso_name);
*dso_handle = dlopen(dlPath.c_str(), dynload_flags);
// if not found, search from default path
if (nullptr == dso_handle) {
LOG(WARNING) << "Failed to find cuda library: " << dlPath;
dlPath = dso_name;
GetDsoHandleFromDefaultPath(dlPath, dso_handle, dynload_flags);
}
static inline void GetDsoHandleFromSearchPath(const std::string& search_root,
const std::string& dso_name,
void** dso_handle) {
int dynload_flags = RTLD_LAZY | RTLD_LOCAL;
*dso_handle = nullptr;
std::string dlPath = dso_name;
if (search_root.empty()) {
GetDsoHandleFromDefaultPath(dlPath, dso_handle, dynload_flags);
} else {
// search xxx.so from custom path
dlPath = join(search_root, dso_name);
*dso_handle = dlopen(dlPath.c_str(), dynload_flags);
// if not found, search from default path
if (nullptr == *dso_handle) {
LOG(WARNING) << "Failed to find cuda library: " << dlPath;
dlPath = dso_name;
GetDsoHandleFromDefaultPath(dlPath, dso_handle, dynload_flags);
}
}
CHECK(nullptr != *dso_handle)
<< "Failed to find cuda library: " << dlPath << std::endl
<< "Please specify its path correctly using one of the following ideas: \n"
<< "Idea 1. set cuda and cudnn lib path at runtime. "
<< "http://www.paddlepaddle.org/doc/ui/cmd_argument/argument_outline.html \n"
<< "For instance, issue command: paddle train --use_gpu=1 "
<< "--cuda_dir=/usr/local/cudnn/lib --cudnn_dir=/usr/local/cudnn/lib ...\n"
<< "Idea 2. set environment variable LD_LIBRARY_PATH on Linux or "
<< "DYLD_LIBRARY_PATH on Mac OS. \n"
<< "For instance, issue command: export LD_LIBRARY_PATH=... \n"
<< "Note: After Mac OS 10.11, using the DYLD_LIBRARY_PATH is impossible "
<< "unless System Integrity Protection (SIP) is disabled. However, @Idea 1"
<< "always work well.";
CHECK(nullptr != *dso_handle) << "Failed to find cuda library: " << dlPath
<< std::endl
<< "Please specify its path correctly using "
"one of the following ways: \n" // NOLINT
<< "Method 1. set cuda and cudnn lib path at "
"runtime. "
<< "http://www.paddlepaddle.org/doc/ui/"
"cmd_argument/"
"argument_outline.html \n" // NOLINT
<< "For instance, issue command: paddle train "
"--use_gpu=1 "
<< "--cuda_dir=/usr/local/cuda/lib64 "
"--cudnn_dir=/usr/local/cudnn/lib "
"...\n" // NOLINT
<< "Method 2. set environment variable "
"LD_LIBRARY_PATH on Linux or "
<< "DYLD_LIBRARY_PATH on Mac OS. \n"
<< "For instance, issue command: export "
"LD_LIBRARY_PATH=... \n"
<< "Note: After Mac OS 10.11, using the "
"DYLD_LIBRARY_PATH is impossible "
<< "unless System Integrity Protection (SIP) "
"is disabled. However, "
"method 1 " // NOLINT
<< "always work well.";
}
void GetCublasDsoHandle(void** dso_handle) {
#if defined(__APPLE__) || defined(__OSX__)
GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcublas.dylib", dso_handle);
GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcublas.dylib", dso_handle);
#else
GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcublas.so", dso_handle);
GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcublas.so", dso_handle);
#endif
}
void GetCudnnDsoHandle(void** dso_handle) {
#if defined(__APPLE__) || defined(__OSX__)
GetDsoHandleFromSearchPath(FLAGS_cudnn_dir, "libcudnn.dylib", dso_handle);
GetDsoHandleFromSearchPath(FLAGS_cudnn_dir, "libcudnn.dylib", dso_handle);
#else
GetDsoHandleFromSearchPath(FLAGS_cudnn_dir, "libcudnn.so", dso_handle);
GetDsoHandleFromSearchPath(FLAGS_cudnn_dir, "libcudnn.so", dso_handle);
#endif
}
void GetCudartDsoHandle(void** dso_handle) {
#if defined(__APPLE__) || defined(__OSX__)
GetDsoHandleFromSearchPath("", "libcudart.dylib", dso_handle);
GetDsoHandleFromSearchPath("", "libcudart.dylib", dso_handle);
#else
GetDsoHandleFromSearchPath("", "libcudart.so", dso_handle);
GetDsoHandleFromSearchPath("", "libcudart.so", dso_handle);
#endif
}
void GetCurandDsoHandle(void** dso_handle) {
#if defined(__APPLE__) || defined(__OSX__)
GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcurand.dylib", dso_handle);
GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcurand.dylib", dso_handle);
#else
GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcurand.so", dso_handle);
GetDsoHandleFromSearchPath(FLAGS_cuda_dir, "libcurand.so", dso_handle);
#endif
}

@ -240,7 +240,7 @@ public:
seqClassficationError_ = 0;
}
virtual void printStats(std::ostream& os) {
virtual void printStats(std::ostream& os) const {
os << config_.name() << "="
<< (numSequences_ ? totalScore_ / numSequences_ : 0);
os << " deletions error"

@ -114,7 +114,7 @@ public:
numCorrect_ = 0;
}
virtual void printStats(std::ostream& os) {
virtual void printStats(std::ostream& os) const {
double precision = (double)numCorrect_ / numOutputSegments_;
double recall = (double)numCorrect_ / numLabelSegments_;
double f1 =

@ -315,7 +315,7 @@ public:
return 0;
}
virtual void printStats(std::ostream& os) {
virtual void printStats(std::ostream& os) const {
CHECK(colIdx_ + (int32_t)colNum_ >= 0 && colIdx_ - (int32_t)colNum_ < 0)
<< "column index [" << colIdx_ << "] out of range [-" << colNum_ << ", "
<< colNum_ << ")";
@ -421,7 +421,7 @@ void AucEvaluator::distributeEval(ParameterClient2* client) {
client->reduce(statNeg_, statNeg_, kBinNum_ + 1, FLAGS_trainer_id, 0);
}
double AucEvaluator::calcAuc() {
double AucEvaluator::calcAuc() const {
double totPos = 0.0;
double totNeg = 0.0;
double totPosPrev = 0.0;
@ -584,7 +584,7 @@ real PrecisionRecallEvaluator::evalImp(std::vector<Argument>& arguments) {
return 0;
}
void PrecisionRecallEvaluator::printStats(std::ostream& os) {
void PrecisionRecallEvaluator::printStats(std::ostream& os) const {
int label = config_.positive_label();
if (label != -1) {
CHECK(label >= 0 && label < (int)statsInfo_.size())

@ -99,19 +99,19 @@ public:
* @brief print the statistics of evaluate result
* @note finish() should be called before printStats
*/
virtual void printStats(std::ostream& os) {
virtual void printStats(std::ostream& os) const {
os << config_.name() << "="
<< (numSamples_ ? totalScore_ / numSamples_ : 0);
}
friend std::ostream& operator<<(std::ostream& os,
Evaluator& evaluator) {
const Evaluator& evaluator) {
evaluator.printStats(os);
return os;
}
friend std::ostream&& operator<<(std::ostream&& os, // NOLINT
Evaluator& evaluator) {
const Evaluator& evaluator) {
evaluator.printStats(os);
return std::move(os);
}
@ -135,7 +135,7 @@ public:
return -1;
}
virtual void finish() {}
virtual void printStats(std::ostream&) {}
virtual void printStats(std::ostream&) const {}
};
/**
* @brief evaluate AUC using colIdx-th column as prediction.
@ -165,7 +165,7 @@ public:
virtual real evalImp(std::vector<Argument>& arguments);
virtual void printStats(std::ostream& os) {
virtual void printStats(std::ostream& os) const {
os << config_.name() << "=" << calcAuc();
}
@ -189,7 +189,7 @@ private:
return (X1 > X2 ? (X1 - X2) : (X2 - X1)) * (Y1 + Y2) / 2.0;
}
double calcAuc();
double calcAuc() const;
};
/**
@ -244,7 +244,7 @@ public:
virtual real evalImp(std::vector<Argument>& arguments);
virtual void printStats(std::ostream& os);
virtual void printStats(std::ostream& os) const;
virtual void distributeEval(ParameterClient2* client);
@ -339,7 +339,7 @@ public:
virtual void finish() { calc(predictArray_); }
virtual void printStats(std::ostream& os) {
virtual void printStats(std::ostream& os) const {
os << " pos/neg"
<< "=" << pairArray_[0] / ((pairArray_[1] <= 0) ? 1.0 : pairArray_[1]);
}

@ -154,7 +154,7 @@ public:
return -1;
}
virtual void printStats(std::ostream& os) {
virtual void printStats(std::ostream& os) const {
for (auto& evaluator : evaluators_) {
evaluator->printStats(os);
os << ' ';

@ -325,7 +325,7 @@ public:
(void)arguments;
return -1;
}
virtual void printStats(std::ostream& os) {
virtual void printStats(std::ostream& os) const {
for (auto& evaluator : evaluators_) {
evaluator->printStats(os);
os << ' ';

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save