|
|
|
@ -29,18 +29,10 @@ bool DepthwiseConvLayer::init(const LayerMap &layerMap,
|
|
|
|
|
inputShape_.resize(numInputs);
|
|
|
|
|
filterShape_.resize(numInputs);
|
|
|
|
|
outputShape_.resize(numInputs);
|
|
|
|
|
multiplierShape_.resize(numInputs);
|
|
|
|
|
weightMultiplier_.resize(numInputs);
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < config_.inputs_size(); i++) {
|
|
|
|
|
std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]};
|
|
|
|
|
std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]};
|
|
|
|
|
Matrix::resizeOrCreate(weightMultiplier_[i],
|
|
|
|
|
(size_t)outputH_[i] * (size_t)outputW_[i],
|
|
|
|
|
(size_t)1,
|
|
|
|
|
false,
|
|
|
|
|
useGpu_);
|
|
|
|
|
weightMultiplier_[i]->one();
|
|
|
|
|
createFunction(forward_,
|
|
|
|
|
"DepthwiseConv",
|
|
|
|
|
FuncConfig()
|
|
|
|
@ -65,100 +57,4 @@ bool DepthwiseConvLayer::init(const LayerMap &layerMap,
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// i is the index of input layers
|
|
|
|
|
#define BACKWARD_INPUT(i, inputs, outputs) \
|
|
|
|
|
backward_[2 * i]->calc(inputs, outputs)
|
|
|
|
|
#define BACKWARD_FILTER(i, inputs, outputs) \
|
|
|
|
|
backward_[2 * i + 1]->calc(inputs, outputs)
|
|
|
|
|
|
|
|
|
|
// compute the depthwise convolution forward pass
|
|
|
|
|
void DepthwiseConvLayer::forward(PassType passType) {
|
|
|
|
|
Layer::forward(passType);
|
|
|
|
|
|
|
|
|
|
size_t batchSize = inputLayers_[0]->getOutputValue()->getHeight();
|
|
|
|
|
|
|
|
|
|
resetOutput(batchSize, getOutputSize());
|
|
|
|
|
|
|
|
|
|
// Calculate the shape of the input, output, and filter.
|
|
|
|
|
for (size_t i = 0; i < inputLayers_.size(); ++i) {
|
|
|
|
|
inputShape_[i] = TensorShape({(size_t)batchSize,
|
|
|
|
|
(size_t)channels_[i],
|
|
|
|
|
(size_t)imgSizeH_[i],
|
|
|
|
|
(size_t)imgSizeW_[i]});
|
|
|
|
|
multiplierShape_[i] =
|
|
|
|
|
TensorShape({(size_t)outputH_[i] * (size_t)outputW_[i], (size_t)1});
|
|
|
|
|
filterShape_[i] = TensorShape({(size_t)groups_[i],
|
|
|
|
|
(size_t)numFilters_ / groups_[i],
|
|
|
|
|
(size_t)channels_[i] / groups_[i],
|
|
|
|
|
(size_t)filterSizeY_[i],
|
|
|
|
|
(size_t)filterSize_[i]});
|
|
|
|
|
outputShape_[i] = TensorShape({(size_t)batchSize,
|
|
|
|
|
(size_t)numFilters_,
|
|
|
|
|
(size_t)outputH_[i],
|
|
|
|
|
(size_t)outputW_[i]});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Calculate the output value.
|
|
|
|
|
for (size_t i = 0; i < inputLayers_.size(); ++i) {
|
|
|
|
|
BufferArgs inputs;
|
|
|
|
|
BufferArgs outputs;
|
|
|
|
|
inputs.addArg(*getInputValue(i), inputShape_[i]);
|
|
|
|
|
inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
|
|
|
|
|
outputs.addArg(
|
|
|
|
|
*getOutputValue(), outputShape_[i], i == 0 ? ASSIGN_TO : ADD_TO);
|
|
|
|
|
|
|
|
|
|
forward_[i]->calc(inputs, outputs);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* add the bias-vector */
|
|
|
|
|
if (biases_.get()) {
|
|
|
|
|
if (sharedBiases_) {
|
|
|
|
|
addSharedBias();
|
|
|
|
|
} else {
|
|
|
|
|
addUnsharedBias();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* activation */
|
|
|
|
|
forwardActivation();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// compute the depthwise convolution backprop.
|
|
|
|
|
void DepthwiseConvLayer::backward(const UpdateCallback &callback) {
|
|
|
|
|
backwardActivation();
|
|
|
|
|
|
|
|
|
|
MatrixPtr outGrad = getOutputGrad();
|
|
|
|
|
if (biases_ && biases_->getWGrad()) {
|
|
|
|
|
bpropBiases(outGrad);
|
|
|
|
|
/* Increasing the number of gradient */
|
|
|
|
|
biases_->getParameterPtr()->incUpdate(callback);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Calculate the input grad and filter grad.
|
|
|
|
|
for (size_t i = 0; i < inputLayers_.size(); ++i) {
|
|
|
|
|
if (getInputGrad(i)) {
|
|
|
|
|
BufferArgs inputs;
|
|
|
|
|
BufferArgs outputs;
|
|
|
|
|
inputs.addArg(*getOutputGrad(), outputShape_[i]);
|
|
|
|
|
inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
|
|
|
|
|
outputs.addArg(*getInputGrad(i), inputShape_[i], ADD_TO);
|
|
|
|
|
BACKWARD_INPUT(i, inputs, outputs);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (weights_[i]->getWGrad()) {
|
|
|
|
|
BufferArgs inputs;
|
|
|
|
|
BufferArgs outputs;
|
|
|
|
|
inputs.addArg(*getOutputGrad(), outputShape_[i]);
|
|
|
|
|
inputs.addArg(*getInputValue(i), inputShape_[i]);
|
|
|
|
|
inputs.addArg(*weightMultiplier_[i], multiplierShape_[i]);
|
|
|
|
|
// weight_multiplier
|
|
|
|
|
outputs.addArg(*weights_[i]->getWGrad(), filterShape_[i], ADD_TO);
|
|
|
|
|
BACKWARD_FILTER(i, inputs, outputs);
|
|
|
|
|
|
|
|
|
|
/* Increasing the number of gradient */
|
|
|
|
|
weights_[i]->getParameterPtr()->incUpdate(callback);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace paddle
|
|
|
|
|