refine and reuse code

fix-develop-build.sh
tensor-tang 7 years ago
parent b7a64e8698
commit 1a99302c14

@ -68,6 +68,6 @@ if (NOT EXISTS ${OCR_INSTALL_DIR} AND WITH_INFERENCE)
message(STATUS "finish downloading ${filename}") message(STATUS "finish downloading ${filename}")
endif() endif()
inference_analysis_test(test_analyzer_ocr SRCS analyzer_vis_tester.cc inference_analysis_test(test_analyzer_ocr SRCS analyzer_vis_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor EXTRA_DEPS ${INFERENCE_EXTRA_DEPS}
ARGS --infer_model=${OCR_INSTALL_DIR}/model ARGS --infer_model=${OCR_INSTALL_DIR}/model
--infer_data=${OCR_INSTALL_DIR}/data.txt) --infer_data=${OCR_INSTALL_DIR}/data.txt)

@ -12,22 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <fstream> #include <fstream>
#include <iostream> #include <iostream>
#include "paddle/fluid/framework/ir/fuse_pass_base.h" #include "paddle/fluid/inference/tests/api/tester_helper.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
DEFINE_string(infer_model, "", "model path for LAC");
DEFINE_string(infer_data, "", "data file for LAC");
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
namespace paddle { namespace paddle {
namespace inference { namespace inference {
@ -105,69 +92,36 @@ void TestVisualPrediction(bool use_mkldnn) {
VLOG(3) << "output.size " << outputs_slots.size(); VLOG(3) << "output.size " << outputs_slots.size();
// run native as reference // run native as reference
NativeConfig config;
config.param_file = FLAGS_infer_model + "/__params__";
config.prog_file = FLAGS_infer_model + "/__model__";
config.use_gpu = false;
config.device = 0;
// config.specify_input_name = true;
auto ref_predictor = auto ref_predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config); CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(cfg);
std::vector<PaddleTensor> ref_outputs_slots; std::vector<PaddleTensor> ref_outputs_slots;
ref_predictor->Run({input}, &ref_outputs_slots); ref_predictor->Run({input}, &ref_outputs_slots);
EXPECT_EQ(ref_outputs_slots.size(), outputs_slots.size()); CompareResult(outputs_slots, ref_outputs_slots);
for (size_t i = 0; i < outputs_slots.size(); ++i) { // print what are fused
auto &ref_out = ref_outputs_slots[i]; AnalysisPredictor *analysis_predictor =
auto &out = outputs_slots[i]; dynamic_cast<AnalysisPredictor *>(predictor.get());
size_t ref_size = auto &fuse_statis = analysis_predictor->analysis_argument()
std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1, .Get<std::unordered_map<std::string, int>>(
[](int a, int b) { return a * b; }); framework::ir::kFuseStatisAttr);
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1, for (auto &item : fuse_statis) {
[](int a, int b) { return a * b; }); LOG(INFO) << "fused " << item.first << " " << item.second;
EXPECT_EQ(size, ref_size); }
EXPECT_EQ(out.dtype, ref_out.dtype); int num_ops = 0;
switch (out.dtype) { for (auto &node :
case PaddleDType::INT64: { analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
int64_t *pdata = static_cast<int64_t *>(out.data.data()); if (node->IsFunction()) {
int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data()); ++num_ops;
for (size_t j = 0; j < size; ++j) {
EXPECT_EQ(pdata_ref[j], pdata[j]);
}
break;
}
case PaddleDType::FLOAT32: {
float *pdata = static_cast<float *>(out.data.data());
float *pdata_ref = static_cast<float *>(ref_out.data.data());
for (size_t j = 0; j < size; ++j) {
EXPECT_NEAR(pdata_ref[j], pdata[j], 1e-3);
}
break;
}
}
// print what are fused
AnalysisPredictor *analysis_predictor =
dynamic_cast<AnalysisPredictor *>(predictor.get());
auto &fuse_statis = analysis_predictor->analysis_argument()
.Get<std::unordered_map<std::string, int>>(
framework::ir::kFuseStatisAttr);
for (auto &item : fuse_statis) {
LOG(INFO) << "fused " << item.first << " " << item.second;
}
int num_ops = 0;
for (auto &node :
analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
if (node->IsFunction()) {
++num_ops;
}
} }
LOG(INFO) << "has num ops: " << num_ops;
} }
LOG(INFO) << "has num ops: " << num_ops;
} }
TEST(Analyzer_vis, analysis) { TestVisualPrediction(/*use_mkldnn*/ false); } TEST(Analyzer_vis, analysis) { TestVisualPrediction(/*use_mkldnn*/ false); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_vis, analysis_mkldnn) { TEST(Analyzer_vis, analysis_mkldnn) {
TestVisualPrediction(/*use_mkldnn*/ true); TestVisualPrediction(/*use_mkldnn*/ true);
} }
#endif
} // namespace analysis } // namespace analysis
} // namespace inference } // namespace inference

@ -37,22 +37,37 @@ namespace paddle {
namespace inference { namespace inference {
void CompareResult(const std::vector<PaddleTensor> &outputs, void CompareResult(const std::vector<PaddleTensor> &outputs,
const std::vector<PaddleTensor> &base_outputs) { const std::vector<PaddleTensor> &ref_outputs) {
PADDLE_ENFORCE_GT(outputs.size(), 0); EXPECT_GT(outputs.size(), 0);
PADDLE_ENFORCE_EQ(outputs.size(), base_outputs.size()); EXPECT_EQ(outputs.size(), ref_outputs.size());
for (size_t i = 0; i < outputs.size(); i++) { for (size_t i = 0; i < outputs.size(); i++) {
auto &out = outputs[i]; auto &out = outputs[i];
auto &base_out = base_outputs[i]; auto &ref_out = ref_outputs[i];
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1, size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
[](int a, int b) { return a * b; }); [](int a, int b) { return a * b; });
size_t size1 = std::accumulate(base_out.shape.begin(), base_out.shape.end(), size_t ref_size =
1, [](int a, int b) { return a * b; }); std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
PADDLE_ENFORCE_EQ(size, size1); [](int a, int b) { return a * b; });
PADDLE_ENFORCE_GT(size, 0); EXPECT_GT(size, 0);
float *data = static_cast<float *>(out.data.data()); EXPECT_EQ(size, ref_size);
float *base_data = static_cast<float *>(base_out.data.data()); EXPECT_EQ(out.dtype, ref_out.dtype);
for (size_t i = 0; i < size; i++) { switch (out.dtype) {
EXPECT_NEAR(data[i], base_data[i], 1e-3); case PaddleDType::INT64: {
int64_t *pdata = static_cast<int64_t *>(out.data.data());
int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
for (size_t j = 0; j < size; ++j) {
EXPECT_EQ(pdata_ref[j], pdata[j]);
}
break;
}
case PaddleDType::FLOAT32: {
float *pdata = static_cast<float *>(out.data.data());
float *pdata_ref = static_cast<float *>(ref_out.data.data());
for (size_t j = 0; j < size; ++j) {
EXPECT_NEAR(pdata_ref[j], pdata[j], 1e-3);
}
break;
}
} }
} }
} }

Loading…
Cancel
Save