|
|
|
@ -12,22 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
|
limitations under the License. */
|
|
|
|
|
|
|
|
|
|
#include "paddle/fluid/inference/analysis/analyzer.h"
|
|
|
|
|
#include <gflags/gflags.h>
|
|
|
|
|
#include <glog/logging.h>
|
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
|
#include <fstream>
|
|
|
|
|
#include <iostream>
|
|
|
|
|
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
|
|
|
|
|
#include "paddle/fluid/inference/analysis/ut_helper.h"
|
|
|
|
|
#include "paddle/fluid/inference/api/analysis_predictor.h"
|
|
|
|
|
#include "paddle/fluid/inference/api/helper.h"
|
|
|
|
|
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
|
|
|
|
|
|
|
|
|
|
DEFINE_string(infer_model, "", "model path for LAC");
|
|
|
|
|
DEFINE_string(infer_data, "", "data file for LAC");
|
|
|
|
|
DEFINE_int32(batch_size, 1, "batch size.");
|
|
|
|
|
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
|
|
|
|
|
#include "paddle/fluid/inference/tests/api/tester_helper.h"
|
|
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
|
namespace inference {
|
|
|
|
@ -105,69 +92,36 @@ void TestVisualPrediction(bool use_mkldnn) {
|
|
|
|
|
VLOG(3) << "output.size " << outputs_slots.size();
|
|
|
|
|
|
|
|
|
|
// run native as reference
|
|
|
|
|
NativeConfig config;
|
|
|
|
|
config.param_file = FLAGS_infer_model + "/__params__";
|
|
|
|
|
config.prog_file = FLAGS_infer_model + "/__model__";
|
|
|
|
|
config.use_gpu = false;
|
|
|
|
|
config.device = 0;
|
|
|
|
|
// config.specify_input_name = true;
|
|
|
|
|
auto ref_predictor =
|
|
|
|
|
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
|
|
|
|
|
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(cfg);
|
|
|
|
|
std::vector<PaddleTensor> ref_outputs_slots;
|
|
|
|
|
ref_predictor->Run({input}, &ref_outputs_slots);
|
|
|
|
|
EXPECT_EQ(ref_outputs_slots.size(), outputs_slots.size());
|
|
|
|
|
for (size_t i = 0; i < outputs_slots.size(); ++i) {
|
|
|
|
|
auto &ref_out = ref_outputs_slots[i];
|
|
|
|
|
auto &out = outputs_slots[i];
|
|
|
|
|
size_t ref_size =
|
|
|
|
|
std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
|
|
|
|
|
[](int a, int b) { return a * b; });
|
|
|
|
|
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
|
|
|
|
|
[](int a, int b) { return a * b; });
|
|
|
|
|
EXPECT_EQ(size, ref_size);
|
|
|
|
|
EXPECT_EQ(out.dtype, ref_out.dtype);
|
|
|
|
|
switch (out.dtype) {
|
|
|
|
|
case PaddleDType::INT64: {
|
|
|
|
|
int64_t *pdata = static_cast<int64_t *>(out.data.data());
|
|
|
|
|
int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
|
|
|
|
|
for (size_t j = 0; j < size; ++j) {
|
|
|
|
|
EXPECT_EQ(pdata_ref[j], pdata[j]);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
case PaddleDType::FLOAT32: {
|
|
|
|
|
float *pdata = static_cast<float *>(out.data.data());
|
|
|
|
|
float *pdata_ref = static_cast<float *>(ref_out.data.data());
|
|
|
|
|
for (size_t j = 0; j < size; ++j) {
|
|
|
|
|
EXPECT_NEAR(pdata_ref[j], pdata[j], 1e-3);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// print what are fused
|
|
|
|
|
AnalysisPredictor *analysis_predictor =
|
|
|
|
|
dynamic_cast<AnalysisPredictor *>(predictor.get());
|
|
|
|
|
auto &fuse_statis = analysis_predictor->analysis_argument()
|
|
|
|
|
.Get<std::unordered_map<std::string, int>>(
|
|
|
|
|
framework::ir::kFuseStatisAttr);
|
|
|
|
|
for (auto &item : fuse_statis) {
|
|
|
|
|
LOG(INFO) << "fused " << item.first << " " << item.second;
|
|
|
|
|
}
|
|
|
|
|
int num_ops = 0;
|
|
|
|
|
for (auto &node :
|
|
|
|
|
analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
|
|
|
|
|
if (node->IsFunction()) {
|
|
|
|
|
++num_ops;
|
|
|
|
|
}
|
|
|
|
|
CompareResult(outputs_slots, ref_outputs_slots);
|
|
|
|
|
// print what are fused
|
|
|
|
|
AnalysisPredictor *analysis_predictor =
|
|
|
|
|
dynamic_cast<AnalysisPredictor *>(predictor.get());
|
|
|
|
|
auto &fuse_statis = analysis_predictor->analysis_argument()
|
|
|
|
|
.Get<std::unordered_map<std::string, int>>(
|
|
|
|
|
framework::ir::kFuseStatisAttr);
|
|
|
|
|
for (auto &item : fuse_statis) {
|
|
|
|
|
LOG(INFO) << "fused " << item.first << " " << item.second;
|
|
|
|
|
}
|
|
|
|
|
int num_ops = 0;
|
|
|
|
|
for (auto &node :
|
|
|
|
|
analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
|
|
|
|
|
if (node->IsFunction()) {
|
|
|
|
|
++num_ops;
|
|
|
|
|
}
|
|
|
|
|
LOG(INFO) << "has num ops: " << num_ops;
|
|
|
|
|
}
|
|
|
|
|
LOG(INFO) << "has num ops: " << num_ops;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Analyzer_vis, analysis) { TestVisualPrediction(/*use_mkldnn*/ false); }
|
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
|
|
|
TEST(Analyzer_vis, analysis_mkldnn) {
|
|
|
|
|
TestVisualPrediction(/*use_mkldnn*/ true);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
} // namespace analysis
|
|
|
|
|
} // namespace inference
|
|
|
|
|