Merge pull request #829 from reyoung/feature/travis_pre_commit_checks

Feature/travis pre commit checks
avx_docs
gangliao 8 years ago committed by GitHub
commit 1adc6a288e

@ -8,10 +8,13 @@ os:
env:
- JOB=DOCS
- JOB=BUILD_AND_TEST
- JOB=PRE_COMMIT
matrix:
exclude:
- os: osx
env: JOB=DOCS # Only generate documentation in linux
env: JOB=DOCS # Only generate documentation in linux.
- os: osx
env: JOB=PRE_COMMIT # Only check pre-commit hook in linux
addons:
apt:
@ -39,6 +42,7 @@ addons:
- lcov
- graphviz
- swig
- clang-format-3.8
before_install:
- |
if [ ${JOB} == "BUILD_AND_TEST" ]; then
@ -53,7 +57,8 @@ before_install:
fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then sudo paddle/scripts/travis/before_install.linux.sh; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then paddle/scripts/travis/before_install.osx.sh; fi
- pip install wheel protobuf sphinx recommonmark virtualenv numpy sphinx_rtd_theme
- if [[ "$JOB" == "PRE_COMMIT" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
- pip install wheel protobuf sphinx recommonmark virtualenv numpy sphinx_rtd_theme pre-commit
script:
- paddle/scripts/travis/main.sh
notifications:

@ -1,17 +1,15 @@
# External dependency to Google protobuf.
http_archive(
name = "protobuf",
url = "http://github.com/google/protobuf/archive/v3.1.0.tar.gz",
sha256 = "0a0ae63cbffc274efb573bdde9a253e3f32e458c41261df51c5dbc5ad541e8f7",
strip_prefix = "protobuf-3.1.0",
)
name="protobuf",
url="http://github.com/google/protobuf/archive/v3.1.0.tar.gz",
sha256="0a0ae63cbffc274efb573bdde9a253e3f32e458c41261df51c5dbc5ad541e8f7",
strip_prefix="protobuf-3.1.0", )
# External dependency to gtest 1.7.0. This method comes from
# https://www.bazel.io/versions/master/docs/tutorial/cpp.html.
new_http_archive(
name = "gtest",
url = "https://github.com/google/googletest/archive/release-1.7.0.zip",
sha256 = "b58cb7547a28b2c718d1e38aee18a3659c9e3ff52440297e965f5edffe34b6d0",
build_file = "third_party/gtest.BUILD",
strip_prefix = "googletest-release-1.7.0",
)
name="gtest",
url="https://github.com/google/googletest/archive/release-1.7.0.zip",
sha256="b58cb7547a28b2c718d1e38aee18a3659c9e3ff52440297e965f5edffe34b6d0",
build_file="third_party/gtest.BUILD",
strip_prefix="googletest-release-1.7.0", )

@ -25,4 +25,3 @@ test 4 2 256 512
test 4 2 512 128
test 4 2 512 256
test 4 2 512 512

@ -15,4 +15,3 @@ set -e
wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
tar zxf cifar-10-python.tar.gz
rm cifar-10-python.tar.gz

@ -15,5 +15,3 @@ do
gunzip ${fname}.gz
fi
done

@ -14,10 +14,9 @@
from paddle.trainer_config_helpers import *
mode = get_config_arg("mode", str, "generator")
assert mode in set(["generator",
"discriminator",
"generator_training",
"discriminator_training"])
assert mode in set([
"generator", "discriminator", "generator_training", "discriminator_training"
])
is_generator_training = mode == "generator_training"
is_discriminator_training = mode == "discriminator_training"
@ -38,8 +37,8 @@ sample_dim = 2
settings(
batch_size=128,
learning_rate=1e-4,
learning_method=AdamOptimizer(beta1=0.5)
)
learning_method=AdamOptimizer(beta1=0.5))
def discriminator(sample):
"""
@ -50,71 +49,88 @@ def discriminator(sample):
of the sample is from real data.
"""
param_attr = ParamAttr(is_static=is_generator_training)
bias_attr = ParamAttr(is_static=is_generator_training,
initial_mean=1.0,
initial_std=0)
bias_attr = ParamAttr(
is_static=is_generator_training, initial_mean=1.0, initial_std=0)
hidden = fc_layer(input=sample, name="dis_hidden", size=hidden_dim,
hidden = fc_layer(
input=sample,
name="dis_hidden",
size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=ReluActivation())
hidden2 = fc_layer(input=hidden, name="dis_hidden2", size=hidden_dim,
hidden2 = fc_layer(
input=hidden,
name="dis_hidden2",
size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
hidden_bn = batch_norm_layer(hidden2,
hidden_bn = batch_norm_layer(
hidden2,
act=ReluActivation(),
name="dis_hidden_bn",
bias_attr=bias_attr,
param_attr=ParamAttr(is_static=is_generator_training,
initial_mean=1.0,
param_attr=ParamAttr(
is_static=is_generator_training, initial_mean=1.0,
initial_std=0.02),
use_global_stats=False)
return fc_layer(input=hidden_bn, name="dis_prob", size=2,
return fc_layer(
input=hidden_bn,
name="dis_prob",
size=2,
bias_attr=bias_attr,
param_attr=param_attr,
act=SoftmaxActivation())
def generator(noise):
"""
generator generates a sample given noise
"""
param_attr = ParamAttr(is_static=is_discriminator_training)
bias_attr = ParamAttr(is_static=is_discriminator_training,
initial_mean=1.0,
initial_std=0)
bias_attr = ParamAttr(
is_static=is_discriminator_training, initial_mean=1.0, initial_std=0)
hidden = fc_layer(input=noise,
hidden = fc_layer(
input=noise,
name="gen_layer_hidden",
size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=ReluActivation())
hidden2 = fc_layer(input=hidden, name="gen_hidden2", size=hidden_dim,
hidden2 = fc_layer(
input=hidden,
name="gen_hidden2",
size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
hidden_bn = batch_norm_layer(hidden2,
hidden_bn = batch_norm_layer(
hidden2,
act=ReluActivation(),
name="gen_layer_hidden_bn",
bias_attr=bias_attr,
param_attr=ParamAttr(is_static=is_discriminator_training,
param_attr=ParamAttr(
is_static=is_discriminator_training,
initial_mean=1.0,
initial_std=0.02),
use_global_stats=False)
return fc_layer(input=hidden_bn,
return fc_layer(
input=hidden_bn,
name="gen_layer1",
size=sample_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
if is_generator_training:
noise = data_layer(name="noise", size=noise_dim)
sample = generator(noise)
@ -126,7 +142,8 @@ if is_generator_training or is_discriminator_training:
label = data_layer(name="label", size=1)
prob = discriminator(sample)
cost = cross_entropy(input=prob, label=label)
classification_error_evaluator(input=prob, label=label, name=mode+'_error')
classification_error_evaluator(
input=prob, label=label, name=mode + '_error')
outputs(cost)
if is_generator:

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -13,7 +13,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This configuration is a demonstration of how to implement the stacked LSTM
with residual connections, i.e. an LSTM layer takes the sum of the hidden states
@ -46,7 +45,8 @@ is_predict = get_config_arg('is_predict', bool, False)
trn = 'data/train.list' if not is_predict else None
tst = 'data/test.list' if not is_predict else 'data/pred.list'
process = 'process' if not is_predict else 'process_predict'
define_py_data_sources2(train_list=trn,
define_py_data_sources2(
train_list=trn,
test_list=tst,
module="dataprovider_emb",
obj=process,
@ -58,10 +58,9 @@ settings(
learning_rate=2e-3,
learning_method=AdamOptimizer(),
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25
)
gradient_clipping_threshold=25)
bias_attr = ParamAttr(initial_std=0.,l2_rate=0.)
bias_attr = ParamAttr(initial_std=0., l2_rate=0.)
data = data_layer(name="word", size=len(word_dict))
emb = embedding_layer(input=data, size=128)
@ -73,17 +72,15 @@ for i in range(3):
# The input to the current layer is the sum of the hidden state
# and input of the previous layer.
current_input = addto_layer(input=[previous_input, previous_hidden_state])
hidden_state = simple_lstm(input=current_input, size=128,
lstm_cell_attr=ExtraAttr(drop_rate=0.1))
hidden_state = simple_lstm(
input=current_input, size=128, lstm_cell_attr=ExtraAttr(drop_rate=0.1))
previous_input, previous_hidden_state = current_input, hidden_state
lstm = previous_hidden_state
lstm_last = pooling_layer(input=lstm, pooling_type=MaxPooling())
output = fc_layer(input=lstm_last, size=2,
bias_attr=bias_attr,
act=SoftmaxActivation())
output = fc_layer(
input=lstm_last, size=2, bias_attr=bias_attr, act=SoftmaxActivation())
if is_predict:
maxid = maxid_layer(output)

@ -69,7 +69,6 @@ def extract_dict_features(pair_file, feature_file):
feature_out.write(feature_str + '\n')
if __name__ == '__main__':
usage = '-p pair_file -f feature_file'

@ -66,7 +66,7 @@ def transform_labels(sentences, labels):
else:
verb_list = []
for x in labels[i][0]:
if x !='-':
if x != '-':
verb_list.append(x)
for j in xrange(1, len(labels[i])):
@ -93,7 +93,7 @@ def transform_labels(sentences, labels):
is_in_bracket = True
else:
print 'error:', ll
sen_lab_pair.append((sentences[i], verb_list[j-1], label_seq))
sen_lab_pair.append((sentences[i], verb_list[j - 1], label_seq))
return sen_lab_pair
@ -103,7 +103,7 @@ def write_file(sen_lab_pair, output_file):
sentence = x[0]
label_seq = ' '.join(x[2])
assert len(sentence.split()) == len(x[2])
fout.write(sentence + '\t' + x[1]+'\t' +label_seq + '\n')
fout.write(sentence + '\t' + x[1] + '\t' + label_seq + '\n')
if __name__ == '__main__':

@ -30,8 +30,7 @@ def hook(settings, word_dict, label_dict, predicate_dict, **kwargs):
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(predicate_dict)),
integer_value_sequence(2),
integer_value_sequence(len(predicate_dict)), integer_value_sequence(2),
integer_value_sequence(len(label_dict))
]
@ -40,8 +39,12 @@ def get_batch_size(yeild_data):
return len(yeild_data[0])
@provider(init_hook=hook, should_shuffle=True, calc_batch_size=get_batch_size,
can_over_batch_size=False, cache=CacheType.CACHE_PASS_IN_MEM)
@provider(
init_hook=hook,
should_shuffle=True,
calc_batch_size=get_batch_size,
can_over_batch_size=False,
cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, file_name):
with open(file_name, 'r') as fdata:
for line in fdata:

@ -20,7 +20,7 @@ from paddle.trainer_config_helpers import *
#file paths
word_dict_file = './data/wordDict.txt'
label_dict_file = './data/targetDict.txt'
predicate_file= './data/verbDict.txt'
predicate_file = './data/verbDict.txt'
train_list_file = './data/train.list'
test_list_file = './data/test.list'
@ -47,7 +47,6 @@ if not is_predict:
w = line.strip()
predicate_dict[w] = i
if is_test:
train_list_file = None
@ -57,9 +56,11 @@ if not is_predict:
test_list=test_list_file,
module='dataprovider',
obj='process',
args={'word_dict': word_dict,
args={
'word_dict': word_dict,
'label_dict': label_dict,
'predicate_dict': predicate_dict })
'predicate_dict': predicate_dict
})
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
@ -77,24 +78,16 @@ mark_dim = 5
hidden_dim = 512
depth = 8
########################### Optimizer #######################################
settings(
batch_size=150,
learning_method=MomentumOptimizer(momentum=0),
learning_rate=2e-2,
regularization=L2Regularization(8e-4),
is_async=False,
model_average=ModelAverage(average_window=0.5,
max_average_window=10000),
)
model_average=ModelAverage(
average_window=0.5, max_average_window=10000), )
####################################### network ##############################
#8 features and 1 target
@ -108,22 +101,28 @@ ctx_p1 = data_layer(name='ctx_p1_data', size=word_dict_len)
ctx_p2 = data_layer(name='ctx_p2_data', size=word_dict_len)
mark = data_layer(name='mark_data', size=mark_dict_len)
if not is_predict:
target = data_layer(name='target', size=label_dict_len)
default_std=1/math.sqrt(hidden_dim)/3.0
default_std = 1 / math.sqrt(hidden_dim) / 3.0
emb_para = ParameterAttribute(name='emb', initial_std=0., learning_rate=0.)
std_0 = ParameterAttribute(initial_std=0.)
std_default = ParameterAttribute(initial_std=default_std)
predicate_embedding = embedding_layer(size=word_dim, input=predicate, param_attr=ParameterAttribute(name='vemb',initial_std=default_std))
mark_embedding = embedding_layer(name='word_ctx-in_embedding', size=mark_dim, input=mark, param_attr=std_0)
word_input=[word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [embedding_layer(size=word_dim, input=x, param_attr=emb_para) for x in word_input]
predicate_embedding = embedding_layer(
size=word_dim,
input=predicate,
param_attr=ParameterAttribute(
name='vemb', initial_std=default_std))
mark_embedding = embedding_layer(
name='word_ctx-in_embedding', size=mark_dim, input=mark, param_attr=std_0)
word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
embedding_layer(
size=word_dim, input=x, param_attr=emb_para) for x in word_input
]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
@ -131,14 +130,18 @@ hidden_0 = mixed_layer(
name='hidden0',
size=hidden_dim,
bias_attr=std_default,
input=[ full_matrix_projection(input=emb, param_attr=std_default ) for emb in emb_layers ])
input=[
full_matrix_projection(
input=emb, param_attr=std_default) for emb in emb_layers
])
mix_hidden_lr = 1e-3
lstm_para_attr = ParameterAttribute(initial_std=0.0, learning_rate=1.0)
hidden_para_attr = ParameterAttribute(initial_std=default_std, learning_rate=mix_hidden_lr)
hidden_para_attr = ParameterAttribute(
initial_std=default_std, learning_rate=mix_hidden_lr)
lstm_0 = lstmemory(name='lstm0',
lstm_0 = lstmemory(
name='lstm0',
input=hidden_0,
act=ReluActivation(),
gate_act=SigmoidActivation(),
@ -149,66 +152,67 @@ lstm_0 = lstmemory(name='lstm0',
#stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]
for i in range(1, depth):
mix_hidden = mixed_layer(name='hidden'+str(i),
mix_hidden = mixed_layer(
name='hidden' + str(i),
size=hidden_dim,
bias_attr=std_default,
input=[full_matrix_projection(input=input_tmp[0], param_attr=hidden_para_attr),
full_matrix_projection(input=input_tmp[1], param_attr=lstm_para_attr)
]
)
lstm = lstmemory(name='lstm'+str(i),
input=[
full_matrix_projection(
input=input_tmp[0], param_attr=hidden_para_attr),
full_matrix_projection(
input=input_tmp[1], param_attr=lstm_para_attr)
])
lstm = lstmemory(
name='lstm' + str(i),
input=mix_hidden,
act=ReluActivation(),
gate_act=SigmoidActivation(),
state_act=SigmoidActivation(),
reverse=((i % 2)==1),
reverse=((i % 2) == 1),
bias_attr=std_0,
param_attr=lstm_para_attr)
input_tmp = [mix_hidden, lstm]
feature_out = mixed_layer(name='output',
feature_out = mixed_layer(
name='output',
size=label_dict_len,
bias_attr=std_default,
input=[full_matrix_projection(input=input_tmp[0], param_attr=hidden_para_attr),
full_matrix_projection(input=input_tmp[1], param_attr=lstm_para_attr)
],
)
input=[
full_matrix_projection(
input=input_tmp[0], param_attr=hidden_para_attr),
full_matrix_projection(
input=input_tmp[1], param_attr=lstm_para_attr)
], )
if not is_predict:
crf_l = crf_layer( name = 'crf',
size = label_dict_len,
input = feature_out,
label = target,
param_attr=ParameterAttribute(name='crfw',initial_std=default_std, learning_rate=mix_hidden_lr)
)
crf_dec_l = crf_decoding_layer(name = 'crf_dec_l',
size = label_dict_len,
input = feature_out,
label = target,
param_attr=ParameterAttribute(name='crfw')
)
crf_l = crf_layer(
name='crf',
size=label_dict_len,
input=feature_out,
label=target,
param_attr=ParameterAttribute(
name='crfw', initial_std=default_std, learning_rate=mix_hidden_lr))
crf_dec_l = crf_decoding_layer(
name='crf_dec_l',
size=label_dict_len,
input=feature_out,
label=target,
param_attr=ParameterAttribute(name='crfw'))
eval = sum_evaluator(input=crf_dec_l)
outputs(crf_l)
else:
crf_dec_l = crf_decoding_layer(name = 'crf_dec_l',
size = label_dict_len,
input = feature_out,
param_attr=ParameterAttribute(name='crfw')
)
crf_dec_l = crf_decoding_layer(
name='crf_dec_l',
size=label_dict_len,
input=feature_out,
param_attr=ParameterAttribute(name='crfw'))
outputs(crf_dec_l)

@ -26,7 +26,8 @@ UNK_IDX = 0
class Prediction():
def __init__(self, train_conf, dict_file, model_dir, label_file, predicate_dict_file):
def __init__(self, train_conf, dict_file, model_dir, label_file,
predicate_dict_file):
"""
train_conf: trainer configure.
dict_file: word dictionary file name.
@ -35,7 +36,7 @@ class Prediction():
self.dict = {}
self.labels = {}
self.predicate_dict={}
self.predicate_dict = {}
self.labels_reverse = {}
self.load_dict_label(dict_file, label_file, predicate_dict_file)
@ -44,24 +45,17 @@ class Prediction():
len_pred = len(self.predicate_dict)
conf = parse_config(
train_conf,
'dict_len=' + str(len_dict) +
',label_len=' + str(len_label) +
',pred_len=' + str(len_pred) +
',is_predict=True')
train_conf, 'dict_len=' + str(len_dict) + ',label_len=' +
str(len_label) + ',pred_len=' + str(len_pred) + ',is_predict=True')
self.network = swig_paddle.GradientMachine.createFromConfigProto(
conf.model_config)
self.network.loadParameters(model_dir)
slots = [
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_pred),
integer_value_sequence(2)
integer_value_sequence(len_dict), integer_value_sequence(len_dict),
integer_value_sequence(len_dict), integer_value_sequence(len_dict),
integer_value_sequence(len_dict), integer_value_sequence(len_dict),
integer_value_sequence(len_pred), integer_value_sequence(2)
]
self.converter = DataProviderConverter(slots)
@ -78,6 +72,7 @@ class Prediction():
for line_count, line in enumerate(open(predicate_dict_file, 'r')):
self.predicate_dict[line.strip()] = line_count
def get_data(self, data_file):
"""
Get input data of paddle format.
@ -90,7 +85,8 @@ class Prediction():
sen_len = len(words)
word_slot = [self.dict.get(w, UNK_IDX) for w in words]
predicate_slot = [self.predicate_dict.get(predicate, UNK_IDX)] * sen_len
predicate_slot = [self.predicate_dict.get(predicate, UNK_IDX)
] * sen_len
ctx_n2_slot = [self.dict.get(ctx_n2, UNK_IDX)] * sen_len
ctx_n1_slot = [self.dict.get(ctx_n1, UNK_IDX)] * sen_len
ctx_0_slot = [self.dict.get(ctx_0, UNK_IDX)] * sen_len
@ -123,7 +119,8 @@ class Prediction():
def option_parser():
usage = ("python predict.py -c config -w model_dir "
usage = (
"python predict.py -c config -w model_dir "
"-d word dictionary -l label_file -i input_file -p pred_dict_file")
parser = OptionParser(usage="usage: %s [options]" % usage)
parser.add_option(
@ -187,8 +184,9 @@ def main():
output_file = options.output_file
swig_paddle.initPaddle("--use_gpu=0")
predict = Prediction(train_conf, dict_file, model_path, label_file, predict_dict_file)
predict.predict(data_file,output_file)
predict = Prediction(train_conf, dict_file, model_path, label_file,
predict_dict_file)
predict.predict(data_file, output_file)
if __name__ == '__main__':

@ -71,9 +71,7 @@ class SentimentPrediction():
transform word into integer index according to the dictionary.
"""
words = data.strip().split()
word_slot = [
self.word_dict[w] for w in words if w in self.word_dict
]
word_slot = [self.word_dict[w] for w in words if w in self.word_dict]
return word_slot
def batch_predict(self, data_batch):
@ -85,8 +83,8 @@ class SentimentPrediction():
if self.label is None:
print("predicting label is %d" % (lab[0]))
else:
print("predicting label is %s" %
(self.label[lab[0]]))
print("predicting label is %s" % (self.label[lab[0]]))
def option_parser():
usage = "python predict.py -n config -w model_dir -d dictionary -i input_file "
@ -143,9 +141,10 @@ def main():
batch.append([predict.get_index(line)])
if len(batch) == batch_size:
predict.batch_predict(batch)
batch=[]
batch = []
if len(batch) > 0:
predict.batch_predict(batch)
if __name__ == '__main__':
main()

@ -19,7 +19,6 @@ import socket
import os
import argparse
# configuration for cluster
API = "/api/v1/namespaces/"
JOBSELECTOR = "labelSelector=job-name="
@ -145,8 +144,8 @@ def startPaddle(idMap={}, train_args_dict=None):
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog="start_paddle.py",
description='simple tool for k8s')
parser = argparse.ArgumentParser(
prog="start_paddle.py", description='simple tool for k8s')
args, train_args_list = parser.parse_known_args()
train_args = refine_unknown_args(train_args_list)
train_args_dict = dict(zip(train_args[:-1:2], train_args[1::2]))

@ -15,8 +15,8 @@ limitations under the License. */
#include "PaddleAPI.h"
#include "PaddleAPIPrivate.h"
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
#include "Internal.h"
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
std::vector<int> GradientMachine::defaultParamTypes = {
PARAMETER_VALUE, PARAMETER_GRADIENT, PARAMETER_MOMENTUM};

@ -16,14 +16,13 @@ limitations under the License. */
#include "PaddleAPI.h"
#include <vector>
#include <algorithm>
#include <vector>
template <typename T1, typename T2>
void staticCastVector(std::vector<T2>* dest, const std::vector<T1>& src) {
dest->resize(src.size());
std::transform(src.begin(),
src.end(),
dest->begin(),
[](T1 t) { return static_cast<T2>(t); });
std::transform(src.begin(), src.end(), dest->begin(), [](T1 t) {
return static_cast<T2>(t);
});
}

@ -12,12 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "PaddleAPI.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
#include "paddle/math/CpuSparseMatrix.h"
#include <iostream>
#include <cstring>
#include <iostream>
#include "PaddleAPI.h"
#include "paddle/math/CpuSparseMatrix.h"
#include "paddle/math/SparseMatrix.h"
struct MatrixPrivate {
std::shared_ptr<paddle::Matrix> mat;

@ -16,8 +16,8 @@ limitations under the License. */
#include <stddef.h>
#include <stdint.h>
#include <string>
#include <stdexcept>
#include <string>
#include <vector>
#include "paddle/utils/GlobalConstants.h"
#include "paddle/utils/TypeDefs.h"

@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "PaddleAPI.h"
#include "paddle/parameter/Parameter.h"
#include "PaddleAPI.h"
struct ParameterPrivate {
std::shared_ptr<paddle::Parameter> sharedPtr;

@ -12,11 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "PaddleAPI.h"
#include "PaddleAPIPrivate.h"
#include "paddle/parameter/ParameterOptimizer.h"
#include "Internal.h"
#include <algorithm>
#include "Internal.h"
#include "PaddleAPI.h"
#include "PaddleAPIPrivate.h"
struct ParameterOptimizerPrivate {
std::unique_ptr<paddle::ParameterOptimizer> optimizer;
@ -36,10 +36,7 @@ struct ParameterTraverseCallbackPrivate {
size_t sparseId) {
std::vector<paddle::VectorPtr> real_vecs;
real_vecs.resize(vecs.size());
std::transform(vecs.begin(),
vecs.end(),
real_vecs.begin(),
[](Vector* v) {
std::transform(vecs.begin(), vecs.end(), real_vecs.begin(), [](Vector* v) {
if (v) {
return *(paddle::VectorPtr*)(v->getSharedPtr());
} else {

@ -12,14 +12,14 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <iterator>
#include <sstream>
#include <vector>
#include "PaddleAPI.h"
#include "paddle/gserver/gradientmachines/GradientMachine.h"
#include "paddle/parameter/Argument.h"
#include "paddle/utils/Flags.h"
#include <vector>
#include <sstream>
#include <algorithm>
#include <iterator>
// used to represent partial sequence
struct Path {

@ -16,12 +16,12 @@ limitations under the License. */
#include "PaddleAPIPrivate.h"
#include <stdlib.h>
#include <memory>
#include <atomic>
#include <memory>
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
#include "paddle/trainer/ParamUtil.h"
#include "paddle/trainer/Trainer.h"
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
#include "paddle/trainer/TrainerInternal.h"
#include "paddle/utils/Flags.h"

@ -14,16 +14,16 @@ limitations under the License. */
#include "PaddleAPI.h"
#include "paddle/utils/Util.h"
#include "paddle/utils/PythonUtil.h"
#include "paddle/utils/Flags.h"
#include "paddle/utils/Excepts.h"
#include "paddle/parameter/Parameter.h"
#include "paddle/utils/Excepts.h"
#include "paddle/utils/Flags.h"
#include "paddle/utils/PythonUtil.h"
#include "paddle/utils/Util.h"
#include <fenv.h>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <algorithm>
void initPaddle(int argc, char** argv) {
paddle::initMain(argc, argv);

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save