commit
1c004a4913
@ -0,0 +1,99 @@
|
||||
import paddle.v2 as paddle
|
||||
import paddle.v2.framework.layers as layers
|
||||
import paddle.v2.framework.nets as nets
|
||||
import paddle.v2.framework.core as core
|
||||
import paddle.v2.framework.optimizer as optimizer
|
||||
|
||||
from paddle.v2.framework.framework import Program, g_program, g_init_program
|
||||
from paddle.v2.framework.executor import Executor
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def convolution_net(input_dim, class_dim=2, emb_dim=32, hid_dim=32):
|
||||
data = layers.data(name="words", shape=[1], data_type="int64")
|
||||
label = layers.data(name="label", shape=[1], data_type="int64")
|
||||
|
||||
emb = layers.embedding(input=data, size=[input_dim, emb_dim])
|
||||
conv_3 = nets.sequence_conv_pool(
|
||||
input=emb,
|
||||
num_filters=hid_dim,
|
||||
filter_size=3,
|
||||
act="tanh",
|
||||
pool_type="sqrt")
|
||||
conv_4 = nets.sequence_conv_pool(
|
||||
input=emb,
|
||||
num_filters=hid_dim,
|
||||
filter_size=4,
|
||||
act="tanh",
|
||||
pool_type="sqrt")
|
||||
prediction = layers.fc(input=[conv_3, conv_4],
|
||||
size=class_dim,
|
||||
act="softmax")
|
||||
cost = layers.cross_entropy(input=prediction, label=label)
|
||||
avg_cost = layers.mean(x=cost)
|
||||
adam_optimizer = optimizer.AdamOptimizer(learning_rate=0.002)
|
||||
opts = adam_optimizer.minimize(avg_cost)
|
||||
acc = layers.accuracy(input=prediction, label=label)
|
||||
return avg_cost, acc
|
||||
|
||||
|
||||
def to_lodtensor(data, place):
|
||||
seq_lens = [len(seq) for seq in data]
|
||||
cur_len = 0
|
||||
lod = [cur_len]
|
||||
for l in seq_lens:
|
||||
cur_len += l
|
||||
lod.append(cur_len)
|
||||
flattened_data = np.concatenate(data, axis=0).astype("int64")
|
||||
flattened_data = flattened_data.reshape([len(flattened_data), 1])
|
||||
res = core.LoDTensor()
|
||||
res.set(flattened_data, place)
|
||||
res.set_lod([lod])
|
||||
return res
|
||||
|
||||
|
||||
def main():
|
||||
BATCH_SIZE = 100
|
||||
PASS_NUM = 5
|
||||
|
||||
word_dict = paddle.dataset.imdb.word_dict()
|
||||
dict_dim = len(word_dict)
|
||||
class_dim = 2
|
||||
|
||||
cost, acc = convolution_net(input_dim=dict_dim, class_dim=class_dim)
|
||||
|
||||
train_data = paddle.batch(
|
||||
paddle.reader.shuffle(
|
||||
paddle.dataset.imdb.train(word_dict), buf_size=1000),
|
||||
batch_size=BATCH_SIZE)
|
||||
place = core.CPUPlace()
|
||||
exe = Executor(place)
|
||||
|
||||
exe.run(g_init_program)
|
||||
|
||||
for pass_id in xrange(PASS_NUM):
|
||||
for data in train_data():
|
||||
tensor_words = to_lodtensor(map(lambda x: x[0], data), place)
|
||||
|
||||
label = np.array(map(lambda x: x[1], data)).astype("int64")
|
||||
label = label.reshape([BATCH_SIZE, 1])
|
||||
|
||||
tensor_label = core.LoDTensor()
|
||||
tensor_label.set(label, place)
|
||||
|
||||
outs = exe.run(g_program,
|
||||
feed={"words": tensor_words,
|
||||
"label": tensor_label},
|
||||
fetch_list=[cost, acc])
|
||||
cost_val = np.array(outs[0])
|
||||
acc_val = np.array(outs[1])
|
||||
|
||||
print("cost=" + str(cost_val) + " acc=" + str(acc_val))
|
||||
if cost_val < 1.0 and acc_val > 0.7:
|
||||
exit(0)
|
||||
exit(1)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in new issue