add interface and test of RecurrentGradientMachine (#156)
* add interface and unittest of RecurrentGradientMachine for the function of multiple Subsequence inlinks with unequal token lengthavx_docs
parent
1c09e9d5d1
commit
1c2ebe467b
@ -0,0 +1,106 @@
|
||||
#edit-mode: -*- python -*-
|
||||
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
######################## data source ################################
|
||||
define_py_data_sources2(train_list='gserver/tests/Sequence/dummy.list',
|
||||
test_list=None,
|
||||
module='rnn_data_provider',
|
||||
obj='process_unequalength_subseq')
|
||||
|
||||
|
||||
settings(batch_size=2, learning_rate=0.01)
|
||||
######################## network configure ################################
|
||||
dict_dim = 10
|
||||
word_dim = 8
|
||||
hidden_dim = 8
|
||||
label_dim = 2
|
||||
|
||||
speaker1 = data_layer(name="word1", size=dict_dim)
|
||||
speaker2 = data_layer(name="word2", size=dict_dim)
|
||||
|
||||
emb1 = embedding_layer(input=speaker1, size=word_dim)
|
||||
emb2 = embedding_layer(input=speaker2, size=word_dim)
|
||||
|
||||
# This hierachical RNN is designed to be equivalent to the simple RNN in
|
||||
# sequence_rnn_multi_unequalength_inputs.conf
|
||||
|
||||
def outer_step(x1, x2):
|
||||
outer_mem1 = memory(name = "outer_rnn_state1", size = hidden_dim)
|
||||
outer_mem2 = memory(name = "outer_rnn_state2", size = hidden_dim)
|
||||
def inner_step1(y):
|
||||
inner_mem = memory(name = 'inner_rnn_state_' + y.name,
|
||||
size = hidden_dim,
|
||||
boot_layer = outer_mem1)
|
||||
out = fc_layer(input = [y, inner_mem],
|
||||
size = hidden_dim,
|
||||
act = TanhActivation(),
|
||||
bias_attr = True,
|
||||
name = 'inner_rnn_state_' + y.name)
|
||||
return out
|
||||
|
||||
def inner_step2(y):
|
||||
inner_mem = memory(name = 'inner_rnn_state_' + y.name,
|
||||
size = hidden_dim,
|
||||
boot_layer = outer_mem2)
|
||||
out = fc_layer(input = [y, inner_mem],
|
||||
size = hidden_dim,
|
||||
act = TanhActivation(),
|
||||
bias_attr = True,
|
||||
name = 'inner_rnn_state_' + y.name)
|
||||
return out
|
||||
|
||||
encoder1 = recurrent_group(
|
||||
step = inner_step1,
|
||||
name = 'inner1',
|
||||
input = x1)
|
||||
|
||||
encoder2 = recurrent_group(
|
||||
step = inner_step2,
|
||||
name = 'inner2',
|
||||
input = x2)
|
||||
|
||||
sentence_last_state1 = last_seq(input = encoder1, name = 'outer_rnn_state1')
|
||||
sentence_last_state2_ = last_seq(input = encoder2, name = 'outer_rnn_state2')
|
||||
|
||||
encoder1_expand = expand_layer(input = sentence_last_state1,
|
||||
expand_as = encoder2)
|
||||
|
||||
return [encoder1_expand, encoder2]
|
||||
|
||||
|
||||
encoder1_rep, encoder2_rep = recurrent_group(
|
||||
name="outer",
|
||||
step=outer_step,
|
||||
input=[SubsequenceInput(emb1), SubsequenceInput(emb2)],
|
||||
targetInlink=emb2)
|
||||
|
||||
encoder1_last = last_seq(input = encoder1_rep)
|
||||
encoder1_expandlast = expand_layer(input = encoder1_last,
|
||||
expand_as = encoder2_rep)
|
||||
context = mixed_layer(input = [identity_projection(encoder1_expandlast),
|
||||
identity_projection(encoder2_rep)],
|
||||
size = hidden_dim)
|
||||
|
||||
rep = last_seq(input=context)
|
||||
prob = fc_layer(size=label_dim,
|
||||
input=rep,
|
||||
act=SoftmaxActivation(),
|
||||
bias_attr=True)
|
||||
|
||||
outputs(classification_cost(input=prob,
|
||||
label=data_layer(name="label", size=label_dim)))
|
||||
|
@ -0,0 +1,75 @@
|
||||
#edit-mode: -*- python -*-
|
||||
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
######################## data source ################################
|
||||
define_py_data_sources2(train_list='gserver/tests/Sequence/dummy.list',
|
||||
test_list=None,
|
||||
module='rnn_data_provider',
|
||||
obj='process_unequalength_seq')
|
||||
|
||||
|
||||
settings(batch_size=2, learning_rate=0.01)
|
||||
######################## network configure ################################
|
||||
dict_dim = 10
|
||||
word_dim = 8
|
||||
hidden_dim = 8
|
||||
label_dim = 2
|
||||
|
||||
speaker1 = data_layer(name="word1", size=dict_dim)
|
||||
speaker2 = data_layer(name="word2", size=dict_dim)
|
||||
|
||||
emb1 = embedding_layer(input=speaker1, size=word_dim)
|
||||
emb2 = embedding_layer(input=speaker2, size=word_dim)
|
||||
|
||||
# This hierachical RNN is designed to be equivalent to the RNN in
|
||||
# sequence_nest_rnn_multi_unequalength_inputs.conf
|
||||
|
||||
def step(x1, x2):
|
||||
def calrnn(y):
|
||||
mem = memory(name = 'rnn_state_' + y.name, size = hidden_dim)
|
||||
out = fc_layer(input = [y, mem],
|
||||
size = hidden_dim,
|
||||
act = TanhActivation(),
|
||||
bias_attr = True,
|
||||
name = 'rnn_state_' + y.name)
|
||||
return out
|
||||
|
||||
encoder1 = calrnn(x1)
|
||||
encoder2 = calrnn(x2)
|
||||
return [encoder1, encoder2]
|
||||
|
||||
encoder1_rep, encoder2_rep = recurrent_group(
|
||||
name="stepout",
|
||||
step=step,
|
||||
input=[emb1, emb2])
|
||||
|
||||
encoder1_last = last_seq(input = encoder1_rep)
|
||||
encoder1_expandlast = expand_layer(input = encoder1_last,
|
||||
expand_as = encoder2_rep)
|
||||
context = mixed_layer(input = [identity_projection(encoder1_expandlast),
|
||||
identity_projection(encoder2_rep)],
|
||||
size = hidden_dim)
|
||||
|
||||
rep = last_seq(input=context)
|
||||
prob = fc_layer(size=label_dim,
|
||||
input=rep,
|
||||
act=SoftmaxActivation(),
|
||||
bias_attr=True)
|
||||
|
||||
outputs(classification_cost(input=prob,
|
||||
label=data_layer(name="label", size=label_dim)))
|
||||
|
Loading…
Reference in new issue