parent
b504a2346c
commit
1dd6dbbce2
@ -0,0 +1,117 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/gemm_conv2d_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class Deconv2DOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("Input"),
|
||||||
|
"Input(Input) of Deconv2DOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("Filter"),
|
||||||
|
"Input(Filter) of Deconv2DOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("Output"),
|
||||||
|
"Output(Output) of Deconv2DOp should not be null.");
|
||||||
|
|
||||||
|
auto in_dims = ctx->GetInputDim("Input");
|
||||||
|
auto filter_dims = ctx->GetInputDim("Filter");
|
||||||
|
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
|
||||||
|
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
|
||||||
|
int groups = ctx->Attrs().Get<int>("groups");
|
||||||
|
int input_channels = in_dims[1];
|
||||||
|
int output_channels = filter_dims[0];
|
||||||
|
|
||||||
|
PADDLE_ENFORCE_EQ(in_dims.size(), 4, "Conv2DOp input should be 4-D.");
|
||||||
|
PADDLE_ENFORCE_EQ(filter_dims.size(), 4, "Conv2DOp filter should be 4-D.");
|
||||||
|
PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
|
||||||
|
"The number of input channels should be equal to filter "
|
||||||
|
"channels * groups.");
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
output_channels % groups, 0,
|
||||||
|
"The number of output channels should be divided by groups.");
|
||||||
|
|
||||||
|
auto output_height = (in_dims[2] - 1) * strides[0] + filter_dims[2];
|
||||||
|
auto output_width = (in_dims[3] - 1) * strides[1] + filter_dims[3];
|
||||||
|
ctx->SetOutputDim(
|
||||||
|
"Output", {in_dims[0], filter_dims[0], output_height, output_width});
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class Deconv2DOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
Deconv2DOpMaker(framework::OpProto* proto,
|
||||||
|
framework::OpAttrChecker* op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput(
|
||||||
|
"Input",
|
||||||
|
"The input tensor of deconvolution operator. "
|
||||||
|
"The format of input tensor is NCHW. Where N is batch size, C is the "
|
||||||
|
"number of channels, H and W is the height and width of image.");
|
||||||
|
AddInput(
|
||||||
|
"Filter",
|
||||||
|
"The filter tensor of deconvolution operator."
|
||||||
|
"The format of the filter tensor is MCHW, where M is the number of "
|
||||||
|
"output image channels, C is the number of input image channels, "
|
||||||
|
"H and W is height and width of filter. "
|
||||||
|
"We enforce groups number == 1 and padding == 0 in our deconvolution
|
||||||
|
Scenario.");
|
||||||
|
AddOutput("Output",
|
||||||
|
"The output tensor of deconvolution operator."
|
||||||
|
"The format of output tensor is also NCHW.");
|
||||||
|
AddAttr<std::vector<int>>("strides", "strides of deconvolution operator.")
|
||||||
|
.SetDefault({1, 1});
|
||||||
|
AddAttr<std::vector<int>>("paddings", "paddings of deconvolution operator.")
|
||||||
|
.SetDefault({0, 0});
|
||||||
|
AddComment(R"DOC(
|
||||||
|
The deconvolution operation calculates the output based on the input, filter
|
||||||
|
and strides, paddings, groups parameters. The size of each dimension of the
|
||||||
|
parameters is checked in the infer-shape.
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class Deconv2DOpGrad : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||||
|
auto in_dims = ctx->GetInputDim("Input");
|
||||||
|
auto filter_dims = ctx->GetInputDim("Filter");
|
||||||
|
if (ctx->HasOutput(framework::GradVarName("Input"))) {
|
||||||
|
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
|
||||||
|
}
|
||||||
|
if (ctx->HasOutput(framework::GradVarName("Filter"))) {
|
||||||
|
ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP(deconv2d, ops::Deconv2DOp, ops::Deconv2DOpMaker, deconv2d_grad,
|
||||||
|
ops::Deconv2DOpGrad);
|
||||||
|
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
deconv2d, ops::GemmConvGrad2DKernel<paddle::platform::CPUPlace, float>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
deconv2d_grad, ops::GemmConv2DKernel<paddle::platform::CPUPlace, float>);
|
Loading…
Reference in new issue