[NPU] add npu kernel for adam (#31644)

* add npu kernel for adam

* refine code

* disable test

* modify atol
revert-31562-mean
Leo Chen 4 years ago committed by GitHub
parent 795b0f92d3
commit 1e956001ec
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,161 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/optimizers/adam_op.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename DeviceContext, typename T>
class AdamNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
const auto* param_var = ctx.InputVar("Param");
PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
platform::errors::InvalidArgument(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s",
ctx.InputNames("Param").front(),
framework::ToTypeName(param_var->Type())));
T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
auto* param = ctx.Input<LoDTensor>("Param");
auto* grad_var = ctx.InputVar("Grad");
PADDLE_ENFORCE_EQ(grad_var->IsType<framework::LoDTensor>(), true,
platform::errors::InvalidArgument(
"The Grad(%s)'s type should be LoDTensor, "
"but the received is %s",
ctx.InputNames("Grad").front(),
framework::ToTypeName(param_var->Type())));
auto* grad = ctx.Input<LoDTensor>("Grad");
auto* mom1 = ctx.Input<LoDTensor>("Moment1");
auto* mom2 = ctx.Input<LoDTensor>("Moment2");
auto* lr = ctx.Input<LoDTensor>("LearningRate");
auto* beta1_pow = ctx.Input<LoDTensor>("Beta1Pow");
auto* beta2_pow = ctx.Input<LoDTensor>("Beta2Pow");
auto* param_out = ctx.Output<LoDTensor>("ParamOut");
auto* mom1_out = ctx.Output<LoDTensor>("Moment1Out");
auto* mom2_out = ctx.Output<LoDTensor>("Moment2Out");
auto* beta1_pow_out = ctx.Output<LoDTensor>("Beta1PowOut");
auto* beta2_pow_out = ctx.Output<LoDTensor>("Beta2PowOut");
param_out->mutable_data<T>(ctx.GetPlace());
mom1_out->mutable_data<T>(ctx.GetPlace());
mom2_out->mutable_data<T>(ctx.GetPlace());
beta1_pow_out->mutable_data<T>(ctx.GetPlace());
beta2_pow_out->mutable_data<T>(ctx.GetPlace());
T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
if (ctx.HasInput("Beta1Tensor")) {
auto* beta1_tensor = ctx.Input<framework::Tensor>("Beta1Tensor");
PADDLE_ENFORCE_EQ(beta1_tensor->numel(), 1,
platform::errors::InvalidArgument(
"Input(Beta1Tensor) size must be 1, but get %d",
beta1_tensor->numel()));
beta1 = static_cast<T>(GetAttrFromTensor(beta1_tensor));
}
T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
if (ctx.HasInput("Beta2Tensor")) {
auto* beta2_tensor = ctx.Input<framework::Tensor>("Beta2Tensor");
PADDLE_ENFORCE_EQ(beta2_tensor->numel(), 1,
platform::errors::InvalidArgument(
"Input(Beta2Tensor) size must be 1, but get %d",
beta2_tensor->numel()));
beta2 = static_cast<T>(GetAttrFromTensor(beta2_tensor));
}
VLOG(3) << "beta1_pow.numel() : " << beta1_pow->numel()
<< "beta2_pow.numel() : " << beta2_pow->numel();
VLOG(3) << "param.numel(): " << param->numel();
PADDLE_ENFORCE_EQ(beta1_pow_out->numel(), 1,
platform::errors::InvalidArgument(
"beta1 pow output size should be 1, but received "
"value is:%d.",
beta1_pow_out->numel()));
PADDLE_ENFORCE_EQ(beta2_pow_out->numel(), 1,
platform::errors::InvalidArgument(
"beta2 pow output size should be 1, but received "
"value is:%d.",
beta2_pow_out->numel()));
// reshape
Tensor beta1_tensor(framework::proto::VarType::FP32);
beta1_tensor.mutable_data<float>({1}, ctx.GetPlace());
TensorFromVector(std::vector<T>{beta1}, ctx.device_context(),
&beta1_tensor);
Tensor beta2_tensor(framework::proto::VarType::FP32);
beta2_tensor.mutable_data<float>({1}, ctx.GetPlace());
TensorFromVector(std::vector<T>{beta2}, ctx.device_context(),
&beta2_tensor);
Tensor epsilon_tensor(framework::proto::VarType::FP32);
epsilon_tensor.mutable_data<T>({1}, ctx.GetPlace());
TensorFromVector(std::vector<T>{epsilon}, ctx.device_context(),
&epsilon_tensor);
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
auto runner =
NpuOpRunner("ApplyAdamD",
{
*param, *mom1, *mom2, *beta1_pow, *beta2_pow, *lr,
beta1_tensor, beta2_tensor, epsilon_tensor, *grad,
},
{
*param_out, *mom1_out, *mom2_out,
},
{});
runner.Run(stream);
// NOTE(zhiqiu): ApplyAdamD updates params inplace, so
// if param and param_out is not same, we need to do copy.
if (param_out->data<T>() != param->data<T>()) {
ctx.template device_context<paddle::platform::NPUDeviceContext>().Wait();
framework::TensorCopySync(*param, ctx.GetPlace(), param_out);
}
if (mom1_out->data<T>() != mom1->data<T>()) {
ctx.template device_context<paddle::platform::NPUDeviceContext>().Wait();
framework::TensorCopySync(*mom1, ctx.GetPlace(), mom1_out);
}
if (mom2_out->data<T>() != mom2->data<T>()) {
ctx.template device_context<paddle::platform::NPUDeviceContext>().Wait();
framework::TensorCopySync(*mom2, ctx.GetPlace(), mom2_out);
}
auto runner_m1 =
NpuOpRunner("Mul", {*beta1_pow, beta1_tensor}, {*beta1_pow_out}, {});
runner_m1.Run(stream);
auto runner_m2 =
NpuOpRunner("Mul", {*beta2_pow, beta2_tensor}, {*beta2_pow_out}, {});
runner_m2.Run(stream);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
adam, ops::AdamNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::AdamNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);

@ -0,0 +1,148 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from test_adam_op import adam_step
paddle.enable_static()
SEED = 2021
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestSGD(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "adam"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The second moment is positive
moment2 = np.random.random((102, 105)).astype("float32")
learning_rate = 0.004
beta1 = 0.78
beta2 = 0.836
epsilon = 1e-4
beta1_pow = beta1**10
beta2_pow = beta2**10
self.inputs = {
'Param': param,
'Grad': grad,
'Moment1': moment1,
'Moment2': moment2,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
'Beta2Pow': np.array([beta2_pow]).astype("float32")
}
self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}
param_out, moment1_out, \
moment2_out = adam_step(self.inputs, self.attrs)
self.outputs = {
'Moment1Out': moment1_out,
'Moment2Out': moment2_out,
'ParamOut': param_out,
'Beta1PowOut': np.array([beta1_pow]).astype("float32") * beta1,
'Beta2PowOut': np.array([beta2_pow]).astype("float32") * beta2
}
def set_npu(self):
self.__class__.use_npu = True
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-5, check_dygraph=False)
'''
# TODO(zhiqiu): The following test may let 0-3 card down.
# we need to analyze it and open it.
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')
sum = paddle.add(a, b)
z = paddle.pow(sum, 2.0)
fc_1 = fluid.layers.fc(input=z, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
adam = fluid.optimizer.Adam(learning_rate=0.01)
adam.minimize(loss)
if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
print("Start run on {}".format(place))
for epoch in range(100):
pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))
return pred_res, loss_res
def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)
self.assertTrue(np.allclose(npu_pred, cpu_pred))
self.assertTrue(np.allclose(npu_loss, cpu_loss))
'''
if __name__ == '__main__':
unittest.main()
Loading…
Cancel
Save