【NPU】Support NPU kernel for reduce_sum op v2 (#31620)
* add reduce_sum * fix broadcastd * fix test * fix * add unsqueeze in reduce_sum * add template * add unittest for keep_dim * test reduce_all Co-authored-by: frankwhzhang <frankwhzhang@126.com>revert-31562-mean
parent
b541ca8795
commit
795b0f92d3
@ -0,0 +1,109 @@
|
||||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
||||
#include "paddle/fluid/operators/npu_op_runner.h"
|
||||
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
|
||||
#include "paddle/fluid/operators/unsqueeze_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class ReduceSumNPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* x = ctx.Input<framework::Tensor>("X");
|
||||
auto* out = ctx.Output<framework::Tensor>("Out");
|
||||
bool reduce_all = ctx.Attr<bool>("reduce_all");
|
||||
bool keep_dims = ctx.Attr<bool>("keep_dim");
|
||||
auto dims = ctx.Attr<std::vector<int>>("dim");
|
||||
|
||||
out->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
auto stream =
|
||||
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
||||
.stream();
|
||||
if (reduce_all) {
|
||||
std::vector<int> dim_vec;
|
||||
for (int i = 0; i < x->dims().size(); i++) {
|
||||
dim_vec.push_back(i);
|
||||
}
|
||||
auto runner = NpuOpRunner("ReduceSumD", {*x}, {*out},
|
||||
{{"axes", dim_vec}, {"keep_dims", keep_dims}});
|
||||
runner.Run(stream);
|
||||
|
||||
} else {
|
||||
auto runner = NpuOpRunner("ReduceSumD", {*x}, {*out},
|
||||
{{"axes", dims}, {"keep_dims", keep_dims}});
|
||||
runner.Run(stream);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class ReduceSumGradNPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* x = ctx.Input<framework::Tensor>("X");
|
||||
auto* out_grad =
|
||||
ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
||||
auto* x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
||||
bool reduce_all = ctx.Attr<bool>("reduce_all");
|
||||
bool keep_dims = ctx.Attr<bool>("keep_dim");
|
||||
auto dims = ctx.Attr<std::vector<int>>("dim");
|
||||
|
||||
x_grad->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
auto stream =
|
||||
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
||||
.stream();
|
||||
if (keep_dims || reduce_all) {
|
||||
auto runner = NpuOpRunner("BroadcastToD", {*out_grad}, {*x_grad},
|
||||
{{"shape", framework::vectorize(x->dims())}});
|
||||
runner.Run(stream);
|
||||
} else {
|
||||
framework::DDim out_dims;
|
||||
out_dims = UnsqueezeKernel<DeviceContext, T>::GetOutputShape(
|
||||
dims, out_grad->dims());
|
||||
|
||||
Tensor out_grad_tmp(out_grad->type());
|
||||
out_grad_tmp.Resize(out_dims);
|
||||
out_grad_tmp.mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
auto runner = NpuOpRunner("BroadcastToD", {out_grad_tmp}, {*x_grad},
|
||||
{{"shape", framework::vectorize(x->dims())}});
|
||||
runner.Run(stream);
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_NPU_KERNEL(
|
||||
reduce_sum,
|
||||
ops::ReduceSumNPUKernel<paddle::platform::NPUDeviceContext, float>,
|
||||
ops::ReduceSumNPUKernel<paddle::platform::NPUDeviceContext, int>,
|
||||
ops::ReduceSumNPUKernel<paddle::platform::NPUDeviceContext,
|
||||
paddle::platform::float16>);
|
||||
REGISTER_OP_NPU_KERNEL(
|
||||
reduce_sum_grad,
|
||||
ops::ReduceSumGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
|
||||
ops::ReduceSumGradNPUKernel<paddle::platform::NPUDeviceContext, int>,
|
||||
ops::ReduceSumGradNPUKernel<paddle::platform::NPUDeviceContext,
|
||||
paddle::platform::float16>);
|
@ -0,0 +1,198 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import unittest
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
|
||||
paddle.enable_static()
|
||||
SEED = 2021
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestReduceSum(OpTest):
|
||||
def setUp(self):
|
||||
np.random.seed(SEED)
|
||||
self.set_npu()
|
||||
self.place = paddle.NPUPlace(0)
|
||||
self.init_op_type()
|
||||
self.initTestCase()
|
||||
|
||||
self.use_mkldnn = False
|
||||
self.attrs = {
|
||||
'dim': self.axis,
|
||||
'keep_dim': self.keep_dim,
|
||||
'reduce_all': self.reduce_all
|
||||
}
|
||||
self.inputs = {'X': np.random.random(self.shape).astype("float32")}
|
||||
if self.attrs['reduce_all']:
|
||||
self.outputs = {'Out': self.inputs['X'].sum()}
|
||||
else:
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'].sum(axis=self.axis,
|
||||
keepdims=self.attrs['keep_dim'])
|
||||
}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float32
|
||||
|
||||
def init_op_type(self):
|
||||
self.op_type = "reduce_sum"
|
||||
self.use_mkldnn = False
|
||||
self.keep_dim = False
|
||||
self.reduce_all = False
|
||||
|
||||
def initTestCase(self):
|
||||
self.shape = (5, 6)
|
||||
self.axis = (0, )
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False)
|
||||
|
||||
# TODO(ascendrc): Add grad test
|
||||
# def test_check_grad(self):
|
||||
# if self.dtype == np.float16:
|
||||
# return
|
||||
# self.check_grad(['X'], 'Out')
|
||||
#
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestReduceSumNet(unittest.TestCase):
|
||||
def set_reduce_sum_function(self, x):
|
||||
# keep_dim = False
|
||||
return paddle.fluid.layers.reduce_sum(x, dim=-1)
|
||||
|
||||
def _test(self, run_npu=True):
|
||||
main_prog = paddle.static.Program()
|
||||
startup_prog = paddle.static.Program()
|
||||
main_prog.random_seed = SEED
|
||||
startup_prog.random_seed = SEED
|
||||
np.random.seed(SEED)
|
||||
|
||||
a_np = np.random.random(size=(2, 3, 4)).astype('float32')
|
||||
b_np = np.random.random(size=(2, 3, 4)).astype('float32')
|
||||
label_np = np.random.randint(2, size=(2, 1)).astype('int64')
|
||||
|
||||
with paddle.static.program_guard(main_prog, startup_prog):
|
||||
a = paddle.static.data(name="a", shape=[2, 3, 4], dtype='float32')
|
||||
b = paddle.static.data(name="b", shape=[2, 3, 4], dtype='float32')
|
||||
label = paddle.static.data(
|
||||
name="label", shape=[2, 1], dtype='int64')
|
||||
|
||||
z = paddle.add(a, b)
|
||||
z_1 = self.set_reduce_sum_function(z)
|
||||
|
||||
prediction = fluid.layers.fc(input=z_1, size=2, act='softmax')
|
||||
|
||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
loss = fluid.layers.reduce_mean(cost)
|
||||
sgd = fluid.optimizer.SGD(learning_rate=0.01)
|
||||
sgd.minimize(loss)
|
||||
|
||||
if run_npu:
|
||||
place = paddle.NPUPlace(0)
|
||||
else:
|
||||
place = paddle.CPUPlace()
|
||||
|
||||
exe = paddle.static.Executor(place)
|
||||
exe.run(startup_prog)
|
||||
|
||||
print("Start run on {}".format(place))
|
||||
for epoch in range(100):
|
||||
|
||||
pred_res, loss_res = exe.run(
|
||||
main_prog,
|
||||
feed={"a": a_np,
|
||||
"b": b_np,
|
||||
"label": label_np},
|
||||
fetch_list=[prediction, loss])
|
||||
if epoch % 10 == 0:
|
||||
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
|
||||
epoch, pred_res[0], loss_res))
|
||||
|
||||
return pred_res, loss_res
|
||||
|
||||
def test_npu(self):
|
||||
cpu_pred, cpu_loss = self._test(False)
|
||||
npu_pred, npu_loss = self._test(True)
|
||||
|
||||
self.assertTrue(np.allclose(npu_pred, cpu_pred))
|
||||
self.assertTrue(np.allclose(npu_loss, cpu_loss))
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestReduceSumNet2(TestReduceSumNet):
|
||||
def set_reduce_sum_function(self, x):
|
||||
# keep_dim = True
|
||||
return paddle.fluid.layers.reduce_sum(x, dim=-1, keep_dim=True)
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestReduceSumNet3(TestReduceSumNet):
|
||||
def _test(self, run_npu=True):
|
||||
main_prog = paddle.static.Program()
|
||||
startup_prog = paddle.static.Program()
|
||||
main_prog.random_seed = SEED
|
||||
startup_prog.random_seed = SEED
|
||||
np.random.seed(SEED)
|
||||
|
||||
a_np = np.random.random(size=(2, 3, 4)).astype('float32')
|
||||
b_np = np.random.random(size=(2, 3, 4)).astype('float32')
|
||||
|
||||
with paddle.static.program_guard(main_prog, startup_prog):
|
||||
a = paddle.static.data(name="a", shape=[2, 3, 4], dtype='float32')
|
||||
b = paddle.static.data(name="b", shape=[2, 3, 4], dtype='float32')
|
||||
|
||||
z = paddle.add(a, b)
|
||||
loss = fluid.layers.reduce_sum(z)
|
||||
sgd = fluid.optimizer.SGD(learning_rate=0.01)
|
||||
sgd.minimize(loss)
|
||||
|
||||
if run_npu:
|
||||
place = paddle.NPUPlace(0)
|
||||
else:
|
||||
place = paddle.CPUPlace()
|
||||
|
||||
exe = paddle.static.Executor(place)
|
||||
exe.run(startup_prog)
|
||||
|
||||
print("Start run on {}".format(place))
|
||||
for epoch in range(100):
|
||||
|
||||
loss_res = exe.run(main_prog,
|
||||
feed={"a": a_np,
|
||||
"b": b_np},
|
||||
fetch_list=[loss])
|
||||
if epoch % 10 == 0:
|
||||
print("Epoch {} | Loss: {}".format(epoch, loss_res))
|
||||
|
||||
return loss_res, loss_res
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue