Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into update_version_via_git_branch

revert-12383-port_py3_syntax
minqiyang 7 years ago
commit 1ee16f5692

@ -61,8 +61,11 @@ option(EIGEN_USE_THREADS "Compile with multi-threaded Eigen" OFF)
option(WITH_ARM_FP16 "Use half precision support on armv8.2-a cpu" OFF)
option(WITH_FAST_BUNDLE_TEST "Bundle tests that can be run in a single process together to reduce launch overhead" OFF)
option(WITH_CONTRIB "Compile the third-party contributation" OFF)
option(REPLACE_ENFORCE_GLOG "Replace PADDLE_ENFORCE with glog/CHECK for better debug." OFF)
option(WITH_ANAKIN "Compile with Anakin library" OFF)
option(WITH_GRPC "Use grpc as the default rpc framework" ${WITH_DISTRIBUTE})
option(WITH_BRPC_RDMA "Use brpc rdma as the rpc protocal" OFF)
option(WITH_SYSTEM_BLAS "Use system blas library" OFF)
# CMAKE_BUILD_TYPE
if(NOT CMAKE_BUILD_TYPE)
@ -131,6 +134,10 @@ if (NOT DEFINED WITH_MKLDNN)
set(WITH_MKLDNN OFF)
endif()
endif()
if (REPLACE_ENFORCE_GLOG)
add_definitions("-DREPLACE_ENFORCE_GLOG")
endif()
########################################################################################
include(external/mklml) # download mklml package
@ -153,12 +160,24 @@ include(external/cares)
if(WITH_DISTRIBUTE)
if(WITH_GRPC)
include(external/grpc)
message(STATUS "Use grpc framework.")
else()
message(STATUS "Use brpc framework.")
include(external/leveldb)
include(external/brpc)
endif()
endif()
if(WITH_BRPC_RDMA)
message(STATUS "Use brpc with rdma.")
if(WITH_GRPC)
message(FATAL_ERROR "Can't use grpc with brpc rdma.")
endif()
if(NOT WITH_DISTRIBUTE)
message(FATAL_ERROR "Can't use brpc rdma in no distribute env.")
endif()
endif()
include(external/snappy) # download snappy
include(external/snappystream)
include(external/threadpool)
@ -178,7 +197,7 @@ include(inference_lib) # add paddle fluid inference libraries
include_directories("${PADDLE_SOURCE_DIR}")
include_directories("${PADDLE_SOURCE_DIR}/paddle/cuda/include")
include_directories("${PADDLE_SOURCE_DIR}/paddle/legacy/cuda/include")
include_directories("${CMAKE_CURRENT_BINARY_DIR}/proto")
include_directories("${CMAKE_CURRENT_BINARY_DIR}/go/pserver/client/c")
@ -222,7 +241,7 @@ add_subdirectory(proto)
if(NOT MOBILE_INFERENCE AND NOT WITH_FLUID_ONLY)
# "add_subdirectory(go)" should be placed after the following loine,
# because it depends on paddle/optimizer.
add_subdirectory(paddle/optimizer)
add_subdirectory(paddle/legacy/optimizer)
endif()
# "add_subdirectory(paddle)" and "add_subdirectory(python)" should be

@ -159,4 +159,4 @@ This will enable VLOG messages generated by `buddy_allocator.{h,cc}` and in the
- verbose level 1: [framework](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/framework)
- verbose level 3: [operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)
- verbose level 5: [memory](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/memory), [platform](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/platform)
- verbose level 7: [math](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/math)
- verbose level 7: [math](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy/math)

@ -4,7 +4,6 @@
[![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/index_en.html)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/index_cn.html)
[![Coverage Status](https://coveralls.io/repos/github/PaddlePaddle/Paddle/badge.svg?branch=develop)](https://coveralls.io/github/PaddlePaddle/Paddle?branch=develop)
[![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
@ -19,6 +18,8 @@ learning to many products at Baidu.
Our vision is to enable deep learning for everyone via PaddlePaddle.
Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddle/releases) to track the latest feature of PaddlePaddle.
### Lastest PaddlePaddle Version: [Fluid](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/fluid)
## Features
- **Flexibility**

@ -125,6 +125,10 @@ def parse_args():
parser.add_argument(
'--use_inference_transpiler',
action='store_true',
help='If set, uses inference transpiler to optimize the program.')
help='If set, use inference transpiler to optimize the program.')
parser.add_argument(
'--no_random',
action='store_true',
help='If set, keep the random seed and do not shuffle the data.')
args = parser.parse_args()
return args

@ -132,10 +132,6 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
exe.run(startup_prog)
# Use inference_transpiler to speedup
if args.use_inference_transpiler:
t = fluid.InferenceTranspiler()
t.transpile(infer_prog, place)
if not args.use_reader_op:
feed_var_list = [
var for var in train_prog.global_block().vars.itervalues()
@ -186,6 +182,10 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
print("Pass: %d, Loss: %f" % (pass_id, np.mean(train_losses))),
# evaluation
if not args.no_test and batch_acc and not args.use_reader_op:
if args.use_inference_transpiler:
t = fluid.InferenceTranspiler()
t.transpile(infer_prog, place)
pass_test_acc = test(exe, infer_prog, test_reader, feeder,
batch_acc)
print(", Test Accuracy: %f" % pass_test_acc)
@ -316,6 +316,8 @@ def main():
args = parse_args()
print_arguments(args)
print_paddle_envs()
if args.no_random:
fluid.default_startup_program().random_seed = 1
# the unique trainer id, starting from 0, needed by trainer
# only

@ -197,12 +197,12 @@ def get_model(args):
optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
batched_train_reader = paddle.batch(
paddle.reader.shuffle(
train_reader if args.no_random else paddle.reader.shuffle(
train_reader, buf_size=5120),
batch_size=args.batch_size * args.gpus,
drop_last=True)
batched_test_reader = paddle.batch(
train_reader, batch_size=args.batch_size, drop_last=True)
test_reader, batch_size=args.batch_size, drop_last=True)
return avg_cost, inference_program, optimizer, batched_train_reader,\
batched_test_reader, batch_acc

@ -83,6 +83,7 @@ else()
set(REFERENCE_CBLAS_LIB_SEARCH_PATHS ${REFERENCE_CBLAS_ROOT}/lib)
endif()
if(WITH_SYSTEM_BLAS)
find_path(REFERENCE_CBLAS_INCLUDE_DIR NAMES cblas.h PATHS
${REFERENCE_CBLAS_INCLUDE_SEARCH_PATHS})
find_library(REFERENCE_CBLAS_LIBRARY NAMES cblas PATHS
@ -96,6 +97,7 @@ if(REFERENCE_CBLAS_INCLUDE_DIR AND REFERENCE_CBLAS_LIBRARY)
add_definitions(-DPADDLE_USE_REFERENCE_CBLAS)
message(STATUS "Found reference-cblas (include: ${CBLAS_INC_DIR}, library: ${CBLAS_LIBRARIES})")
endif()
endif()
if(IOS_USE_VECLIB_FOR_BLAS AND VECLIB_FOUND)
set(CBLAS_FOUND ON)

@ -174,3 +174,7 @@ endif(WITH_GOLANG)
if(WITH_GRPC)
add_definitions(-DPADDLE_WITH_GRPC)
endif(WITH_GRPC)
if(WITH_BRPC_RDMA)
add_definitions(-DPADDLE_WITH_BRPC_RDMA)
endif(WITH_BRPC_RDMA)

@ -14,6 +14,15 @@
INCLUDE(ExternalProject)
find_library(SSL_LIBRARY NAMES ssl)
ADD_LIBRARY(ssl SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET ssl PROPERTY IMPORTED_LOCATION ${SSL_LIBRARY})
find_library(CRYPTO_LIBRARY NAMES crypto)
ADD_LIBRARY(crypto SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET crypto PROPERTY IMPORTED_LOCATION ${CRYPTO_LIBRARY})
SET(BRPC_SOURCES_DIR ${THIRD_PARTY_PATH}/brpc)
SET(BRPC_INSTALL_DIR ${THIRD_PARTY_PATH}/install/brpc)
SET(BRPC_INCLUDE_DIR "${BRPC_INSTALL_DIR}/include" CACHE PATH "brpc include directory." FORCE)
@ -22,14 +31,14 @@ SET(BRPC_LIBRARIES "${BRPC_INSTALL_DIR}/lib/libbrpc.a" CACHE FILEPATH "brpc libr
INCLUDE_DIRECTORIES(${BRPC_INCLUDE_DIR})
# Reference https://stackoverflow.com/questions/45414507/pass-a-list-of-prefix-paths-to-externalproject-add-in-cmake-args
set(prefix_path "${THIRD_PARTY_PATH}/install/gflags|${THIRD_PARTY_PATH}/install/leveldb|${THIRD_PARTY_PATH}/install/snappy|${THIRD_PARTY_PATH}/install/gtest|${THIRD_PARTY_PATH}/install/protobuf")
set(prefix_path "${THIRD_PARTY_PATH}/install/gflags|${THIRD_PARTY_PATH}/install/leveldb|${THIRD_PARTY_PATH}/install/snappy|${THIRD_PARTY_PATH}/install/gtest|${THIRD_PARTY_PATH}/install/protobuf|${THIRD_PARTY_PATH}/install/zlib")
# If minimal .a is need, you can set WITH_DEBUG_SYMBOLS=OFF
ExternalProject_Add(
extern_brpc
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/brpc/brpc"
GIT_TAG "6d153dd7ff00f960ae6895c9c5fff0ce9f07aff2"
GIT_REPOSITORY "https://github.com/gongweibao/brpc"
GIT_TAG "7dc04defad1fd4173aae170c3fcbde131b65155a"
PREFIX ${BRPC_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
@ -42,6 +51,8 @@ ExternalProject_Add(
-DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE}
-DCMAKE_PREFIX_PATH=${prefix_path}
-DBRPC_WITH_GLOG=ON
-DIOBUF_WITH_HUGE_BLOCK=ON
-DBRPC_WITH_RDMA=${WITH_BRPC_RDMA}
${EXTERNAL_OPTIONAL_ARGS}
LIST_SEPARATOR |
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${BRPC_INSTALL_DIR}
@ -49,7 +60,7 @@ ExternalProject_Add(
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_BUILD_TYPE:STRING=${THIRD_PARTY_BUILD_TYPE}
)
ADD_DEPENDENCIES(extern_brpc protobuf leveldb gflags glog gtest snappy)
ADD_DEPENDENCIES(extern_brpc protobuf ssl crypto leveldb gflags glog gtest snappy)
ADD_LIBRARY(brpc STATIC IMPORTED GLOBAL)
SET_PROPERTY(TARGET brpc PROPERTY IMPORTED_LOCATION ${BRPC_LIBRARIES})
ADD_DEPENDENCIES(brpc extern_brpc)

@ -96,6 +96,20 @@ if(NOT APPLE AND NOT ANDROID)
set(CMAKE_CXX_LINK_EXECUTABLE "${CMAKE_CXX_LINK_EXECUTABLE} -pthread -ldl -lrt")
endif(NOT APPLE AND NOT ANDROID)
set_property(GLOBAL PROPERTY FLUID_MODULES "")
# find all fluid modules is used for paddle fluid static library
# for building inference libs
function(find_fluid_modules TARGET_NAME)
get_filename_component(__target_path ${TARGET_NAME} ABSOLUTE)
string(REGEX REPLACE "^${PADDLE_SOURCE_DIR}/" "" __target_path ${__target_path})
string(FIND "${__target_path}" "fluid" pos)
if(pos GREATER 1)
get_property(fluid_modules GLOBAL PROPERTY FLUID_MODULES)
set(fluid_modules ${fluid_modules} ${TARGET_NAME})
set_property(GLOBAL PROPERTY FLUID_MODULES "${fluid_modules}")
endif()
endfunction(find_fluid_modules)
function(merge_static_libs TARGET_NAME)
set(libs ${ARGN})
list(REMOVE_DUPLICATES libs)
@ -243,13 +257,14 @@ function(cc_test TARGET_NAME)
set(multiValueArgs SRCS DEPS ARGS)
cmake_parse_arguments(cc_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_executable(${TARGET_NAME} ${cc_test_SRCS})
target_link_libraries(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main memory gtest gflags glog)
add_dependencies(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main memory gtest gflags glog)
target_link_libraries(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog)
add_dependencies(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog)
add_test(NAME ${TARGET_NAME}
COMMAND ${TARGET_NAME} ${cc_test_ARGS}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
if (${cc_test_SERIAL})
set_property(TEST ${TARGET_NAME} PROPERTY SERIAL 1)
set_property(TEST ${TARGET_NAME} PROPERTY ENVIRONMENT FLAGS_init_allocated_mem=true)
endif()
endif()
endfunction(cc_test)
@ -309,11 +324,12 @@ function(nv_test TARGET_NAME)
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(nv_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
cuda_add_executable(${TARGET_NAME} ${nv_test_SRCS})
target_link_libraries(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main memory gtest gflags glog)
add_dependencies(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main memory gtest gflags glog)
target_link_libraries(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog)
add_dependencies(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog)
add_test(${TARGET_NAME} ${TARGET_NAME})
if (nv_test_SERIAL)
set_property(TEST ${TARGET_NAME} PROPERTY SERIAL 1)
set_property(TEST ${TARGET_NAME} PROPERTY ENVIRONMENT FLAGS_init_allocated_mem=true)
endif()
endif()
endfunction(nv_test)
@ -561,7 +577,7 @@ function(py_test TARGET_NAME)
set(multiValueArgs SRCS DEPS ARGS ENVS)
cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(NAME ${TARGET_NAME}
COMMAND env PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_test_ENVS}
COMMAND env FLAGS_init_allocated_mem=true PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_test_ENVS}
${PYTHON_EXECUTABLE} -u ${py_test_SRCS} ${py_test_ARGS}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif()

@ -12,19 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
set_property(GLOBAL PROPERTY FLUID_MODULES "")
# find all fluid modules is used for paddle fluid static library
function(find_fluid_modules TARGET_NAME)
get_filename_component(__target_path ${TARGET_NAME} ABSOLUTE)
string(REGEX REPLACE "^${PADDLE_SOURCE_DIR}/" "" __target_path ${__target_path})
string(FIND "${__target_path}" "fluid" pos)
if(pos GREATER 1)
get_property(fluid_modules GLOBAL PROPERTY FLUID_MODULES)
set(fluid_modules ${fluid_modules} ${TARGET_NAME})
set_property(GLOBAL PROPERTY FLUID_MODULES "${fluid_modules}")
endif()
endfunction(find_fluid_modules)
# make package for paddle fluid shared and static library
function(copy TARGET)
set(options "")
@ -154,7 +141,7 @@ set(inference_deps paddle_fluid_shared paddle_fluid)
if(WITH_CONTRIB)
message(STATUS "installing contrib")
set(contrib_dst_dir "${FLUID_INSTALL_DIR}/contrib/inference")
if (WITH_ANAKIN)
if (WITH_ANAKIN AND WITH_GPU)
copy(contrib_anakin_inference_lib DEPS paddle_inference_api inference_anakin_api
SRCS
${PADDLE_BINARY_DIR}/paddle/contrib/inference/libinference_anakin_api* # compiled anakin api
@ -163,9 +150,9 @@ if(WITH_CONTRIB)
list(APPEND inference_deps contrib_anakin_inference_lib)
endif()
copy(contrib_inference_lib DEPS paddle_inference_api
copy(contrib_inference_lib DEPS paddle_inference_api paddle_inference_api_shared
SRCS ${PADDLE_SOURCE_DIR}/paddle/contrib/inference/paddle_inference_api.h
${PADDLE_BINARY_DIR}/paddle/contrib/inference/libpaddle_inference_api.*
${PADDLE_BINARY_DIR}/paddle/contrib/inference/libpaddle_inference_api*
DSTS ${contrib_dst_dir} ${contrib_dst_dir})
list(APPEND inference_deps contrib_inference_lib)
endif()

@ -1468,6 +1468,14 @@ argmax
.. autofunction:: paddle.fluid.layers.argmax
:noindex:
.. _api_fluid_layers_argsort:
argsort
-------
.. autofunction:: paddle.fluid.layers.argsort
:noindex:
.. _api_fluid_layers_ones:
ones

@ -0,0 +1,35 @@
# Distributed Training with NCCL2
We design a pattern that can enable training with `ParallelExecutor` and
using [NCCL2](https://developer.nvidia.com/nccl) as it's collective
communication library.
In `ParallelExecutor` we can use `AllReduce` or `Reduce` and `Broadcast`
to do multi GPU training. And if we initialize NCCL2 communicators as
ranks in a distributed environment, we can simply run the `ParallelExecutor`
as a distributed program! The only thing that may be different than in
the single node version is that we need to broadcast the NCCL unique ID
to all the nodes, and initialize communicators using that ID, so NCCL2
will know each other as ranks.
To achieve this feature, we introduce a new operator: `gen_nccl_id` op,
so we are ***not*** "bind to" running NCCL2 with MPI, we can run it in
what ever platform you like.
It have two running modes:
1. Generate and broadcast mode, which should be used on trainer 0;
1. Listen and fetch mode, which should be used on trainers other than 0.
In both two modes, this op can save the NCCL ID into current scope as a
persistable variable, Then we can insert this op at the end of
"startup program" of fluid, so that all workers can get the same ID to
initialize NCCL communicator objects.
<img src="src/ncc2_design.png">
The above figure indicates the general process when training with NCCL2
distributed. Each trainer have the number of communicators equal to the
number of GPUs, but the ranks should match the global ranks number: here
we have total 8 GPUs, so `nranks==8`, for each trainer, the ranks should
be from 0 ~ 3 on trainer 0 and 4 ~ 7 on trainer 1.

@ -119,6 +119,32 @@ optimization algorithm $f$ runs on the storage service.
- Con: the storage service needs to be able to run the optimization
algorithm.
## Distributed Sparse Table in Fluid
For another design, we can implement a distributed sparse table in Fluid,
and don't need to maintain an external storage component while training.
You may need to read Fluid [Distributed Training Architecture](./distributed_architecture.md)
and [Parameter Server](./parameter_server.md) before going on.
![fluid lookup remote table](./src/fluid_lookup_remote_table.png)
Partition a large table into multiple pserver instances
1. `DistributeTranspiler` would split the table partitioned into some small
table blocks with some partitioned algorithms such as
[RoundRobin](https://en.wikipedia.org/wiki/Round-robin_scheduling),
[Hash](https://en.wikipedia.org/wiki/Hash) and etc...
1. For some cases, the range of input `Ids` is very wide and unpredictable, so the sparse
table would be able to fill a new value for the id that didn't appear before with
zero, uniform random or Gaussian distribution.
For each Trainer's training process:
1. In the forward pass, we use `pre-fetch` op to pre-fetch parameter blocks according to the
input `Ids` from PServers instead of the local `lookup_table` op, and then merge the blocks
into a parameter `W`.
1. Compute `GRAD@W'` in the backward pass using the pre-fetched `W` and send it to PServer to
execute the optimize pass.
## Conclusion
Let us do the "storage service does not optimize" solution first, as a

Binary file not shown.

After

Width:  |  Height:  |  Size: 317 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

@ -74,10 +74,10 @@ void OperatorWithKernel::Run(
auto kernel_type_for_var = this->GetKernelTypeForVar(...);
if (kernel_type_for_var.place_ != expected_kernel_key.place_) {
auto* trans_var = new_scope.Var(var_name);
auto* out = DataTransform(expected_kernel_key,
auto* out = TransformData(expected_kernel_key,
kernel_type_for_var,
*tensor_in);
CopyVariableWithTensor(...);
SetTensorToVariable(...);
}
}

@ -52,7 +52,7 @@ In `trainer_internal.cpp:L93 trainOneBatch`:
When doing actual network forward and backward, at the beginning of each batch, the trainer will try to download one row of data from pserver.
In `trainer/RemoteParameterUpdater.cpp`: `parameterUpdater_->getParametersRemote();`:
In `legacy/trainer/RemoteParameterUpdater.cpp`: `parameterUpdater_->getParametersRemote();`:
```c++
if (fullSize) {

@ -65,7 +65,7 @@ paddle_error paddle_matrix_get_shape(paddle_matrix matrix,
而在CPP里面实现这个C的接口文件 `paddle_matrix.cpp`
```cpp
#include "paddle/math/matrix.h"
#include "paddle/legacy/math/matrix.h"
extern "C"
paddle_error paddle_matrix_shape(paddle_matrix matrix,
uint64_t *width,

@ -58,7 +58,7 @@ PaddlePaddle的base layer类可以自动计算上面的导数。
实现C++类
===================
一个网络层的C++类需要实现初始化,前向和后向。全连接层的实现位于:code:`paddle/gserver/layers/FullyConnectedLayer.h`及:code:`paddle/gserver/layers/FullyConnectedLayer.cpp`。这里我们展示一份简化过的代码。
一个网络层的C++类需要实现初始化,前向和后向。全连接层的实现位于:code:`paddle/legacy/gserver/layers/FullyConnectedLayer.h`及:code:`paddle/legacy/gserver/layers/FullyConnectedLayer.cpp`。这里我们展示一份简化过的代码。
这个类需要继承 :code:`paddle::Layer` 这个基类,并且需要重写基类中的以下几个虚函数:
@ -153,7 +153,7 @@ PaddlePaddle的base layer类可以自动计算上面的导数。
- 每个层在其 :code:`forward` 函数的开头必须调用 :code:`Layer::forward(passType);`
- 之后使用 :code:`reserveOutput(batchSize, size);` 为输出分配内存。由于我们支持训练数据有不同的批次大小,所以这一步是必要的。 :code:`reserveOutput` 会相应地改变输出的尺寸。为了保证效率,如果需要扩大矩阵,我们会重新分配内存;如果需要缩减矩阵,我们会继续使用现有的内存块。
- 之后使用矩阵运算函数来计算 :math:`\sum_i W_i x + b`:code:`getInput(i).value` 返回第i个输入矩阵。每个输入都是一个 :math:`batchSize \times dim` 的矩阵,每行表示一个批次中的单个输入。对于我们支持的全部矩阵操作,请参考 :code:`paddle/math/Matrix.h`和:code:`paddle/math/BaseMatrix.h` 。
- 之后使用矩阵运算函数来计算 :math:`\sum_i W_i x + b`:code:`getInput(i).value` 返回第i个输入矩阵。每个输入都是一个 :math:`batchSize \times dim` 的矩阵,每行表示一个批次中的单个输入。对于我们支持的全部矩阵操作,请参考 :code:`paddle/legacy/math/Matrix.h`和:code:`paddle/legacy/math/BaseMatrix.h` 。
- 最终,使用 :code:`forwardActivation();` 进行激活操作。这会自动进行网络配置中声明的激活操作。
@ -262,7 +262,7 @@ PaddlePaddle的base layer类可以自动计算上面的导数。
REGISTER_LAYER(fc, FullyConnectedLayer);
}
:code:`cpp` 被放在 :code:`paddle/gserver/layers` 目录下,其会自动被加入编译列表。
:code:`cpp` 被放在 :code:`paddle/legacy/gserver/layers` 目录下,其会自动被加入编译列表。
写梯度检查单元测试
@ -270,7 +270,7 @@ PaddlePaddle的base layer类可以自动计算上面的导数。
写梯度检查单元测试是一个验证新实现的层是否正确的相对简单的办法。梯度检查单元测试通过有限差分法来验证一个层的梯度。首先对输入做一个小的扰动 :math:`\Delta x` ,然后观察到输出的变化为 :math:`\Delta y` ,那么,梯度就可以通过这个方程计算得到 :math:`\frac{\Delta y}{\Delta x }` 。之后,再用这个梯度去和 :code:`backward` 函数得到的梯度去对比,以保证梯度计算的正确性。需要注意的是梯度检查仅仅验证了梯度的计算,并不保证 :code:`forward`:code:`backward` 函数的实现是正确的。你需要一些更复杂的单元测试来保证你实现的网络层是正确的。
所有网络层的梯度检查单测都位于 :code:`paddle/gserver/tests/test_LayerGrad.cpp` 。我们建议你在写新网络层时把测试代码放入新的文件中。下面列出了全连接层的梯度检查单元测试。它包含以下几步:
所有网络层的梯度检查单测都位于 :code:`paddle/legacy/gserver/tests/test_LayerGrad.cpp` 。我们建议你在写新网络层时把测试代码放入新的文件中。下面列出了全连接层的梯度检查单元测试。它包含以下几步:
+ 生成网络层配置。网络层配置包含以下几项:
- 偏置参数的大小。例子中是4096
@ -322,7 +322,7 @@ PaddlePaddle的base layer类可以自动计算上面的导数。
}
}
如果你要为了测试而增加新的文件,例如 :code:`paddle/gserver/tests/testFCGrad.cpp` ,你需要把该文件加入 :code:`paddle/gserver/tests/CMakeLists.txt` 中。下面给出了一个例子。当你执行命令 :code:`make tests`所有的单测都会被执行一次。注意有些层可能需要高精度来保证梯度检查单测正确执行。你需要在配置cmake时将 :code:`WITH_DOUBLE` 设置为 `ON`
如果你要为了测试而增加新的文件,例如 :code:`paddle/legacy/gserver/tests/testFCGrad.cpp` ,你需要把该文件加入 :code:`paddle/legacy/gserver/tests/CMakeLists.txt` 中。下面给出了一个例子。当你执行命令 :code:`make tests`所有的单测都会被执行一次。注意有些层可能需要高精度来保证梯度检查单测正确执行。你需要在配置cmake时将 :code:`WITH_DOUBLE` 设置为 `ON`
.. code-block:: bash

@ -58,7 +58,7 @@ Finally we can use chain rule to calculate :math:`\frac{\partial z}{\partial x}`
Implement C++ Class
===================
The C++ class of the layer implements the initialization, forward, and backward part of the layer. The fully connected layer is at :code:`paddle/gserver/layers/FullyConnectedLayer.h` and :code:`paddle/gserver/layers/FullyConnectedLayer.cpp`. We list simplified version of the code below.
The C++ class of the layer implements the initialization, forward, and backward part of the layer. The fully connected layer is at :code:`paddle/legacy/gserver/layers/FullyConnectedLayer.h` and :code:`paddle/legacy/gserver/layers/FullyConnectedLayer.cpp`. We list simplified version of the code below.
It needs to derive the base class :code:`paddle::Layer`, and it needs to override the following functions:
@ -154,7 +154,7 @@ The implementation of the forward part has the following steps.
- Every layer must call :code:`Layer::forward(passType);` at the beginning of its :code:`forward` function.
- Then it allocates memory for the output using :code:`reserveOutput(batchSize, size);`. This step is necessary because we support the batches to have different batch sizes. :code:`reserveOutput` will change the size of the output accordingly. For the sake of efficiency, we will allocate new memory if we want to expand the matrix, but we will reuse the existing memory block if we want to shrink the matrix.
- Then it computes :math:`\sum_i W_i x + b` using Matrix operations. :code:`getInput(i).value` retrieve the matrix of the i-th input. Each input is a :math:`batchSize \times dim` matrix, where each row represents an single input in a batch. For a complete lists of supported matrix operations, please refer to :code:`paddle/math/Matrix.h` and :code:`paddle/math/BaseMatrix.h`.
- Then it computes :math:`\sum_i W_i x + b` using Matrix operations. :code:`getInput(i).value` retrieve the matrix of the i-th input. Each input is a :math:`batchSize \times dim` matrix, where each row represents an single input in a batch. For a complete lists of supported matrix operations, please refer to :code:`paddle/legacy/math/Matrix.h` and :code:`paddle/legacy/math/BaseMatrix.h`.
- Finally it applies the activation function using :code:`forwardActivation();`. It will automatically applies the corresponding activation function specifies in the network configuration.
@ -263,7 +263,7 @@ Finally, you can use :code:`REGISTER_LAYER(fc, FullyConnectedLayer);` to registe
REGISTER_LAYER(fc, FullyConnectedLayer);
}
If the :code:`cpp` file is put into :code:`paddle/gserver/layers`, it will be automatically added to the compilation list.
If the :code:`cpp` file is put into :code:`paddle/legacy/gserver/layers`, it will be automatically added to the compilation list.
Write Gradient Check Unit Test
@ -271,7 +271,7 @@ Write Gradient Check Unit Test
An easy way to verify the correctness of new layer's implementation is to write a gradient check unit test. Gradient check unit test utilizes finite difference method to verify the gradient of a layer. It modifies the input with a small perturbation :math:`\Delta x` and observes the changes of output :math:`\Delta y`, the gradient can be computed as :math:`\frac{\Delta y}{\Delta x }`. This gradient can be compared with the gradient computed by the :code:`backward` function of the layer to ensure the correctness of the gradient computation. Notice that the gradient check only tests the correctness of the gradient computation, it does not necessarily guarantee the correctness of the implementation of the :code:`forward` and :code:`backward` function. You need to write more sophisticated unit tests to make sure your layer is implemented correctly.
All the gradient check unit tests are located in :code:`paddle/gserver/tests/test_LayerGrad.cpp`. You are recommended to put your test into a new test file if you are planning to write a new layer. The gradient test of the gradient check unit test of the fully connected layer is listed below. It has the following steps.
All the gradient check unit tests are located in :code:`paddle/legacy/gserver/tests/test_LayerGrad.cpp`. You are recommended to put your test into a new test file if you are planning to write a new layer. The gradient test of the gradient check unit test of the fully connected layer is listed below. It has the following steps.
+ Create layer configuration. A layer configuration can include the following attributes:
- size of the bias parameter. (4096 in our example)
@ -323,7 +323,7 @@ All the gradient check unit tests are located in :code:`paddle/gserver/tests/tes
}
}
If you are creating a new file for the test, such as :code:`paddle/gserver/tests/testFCGrad.cpp`, you need to add the file to :code:`paddle/gserver/tests/CMakeLists.txt`. An example is given below. All the unit tests will run when you execute the command :code:`make tests`. Notice that some layers might need high accuracy for the gradient check unit tests to work well. You need to configure :code:`WITH_DOUBLE` to `ON` when configuring cmake.
If you are creating a new file for the test, such as :code:`paddle/legacy/gserver/tests/testFCGrad.cpp`, you need to add the file to :code:`paddle/legacy/gserver/tests/CMakeLists.txt`. An example is given below. All the unit tests will run when you execute the command :code:`make tests`. Notice that some layers might need high accuracy for the gradient check unit tests to work well. You need to configure :code:`WITH_DOUBLE` to `ON` when configuring cmake.
.. code-block:: bash
@ -339,7 +339,7 @@ If you are creating a new file for the test, such as :code:`paddle/gserver/tests
Implement Python Wrapper
========================
Implementing Python wrapper allows us to use the added layer in configuration files. All the Python wrappers are in file :code:`python/paddle/trainer/config_parser.py`. An example of the Python wrapper for fully connected layer is listed below. It has the following steps:
Implementing Python wrapper allows us to use the added layer in configuration files. All the Python wrappers are in file :code:`python/paddle/legacy/trainer/config_parser.py`. An example of the Python wrapper for fully connected layer is listed below. It has the following steps:
- Use :code:`@config_layer('fc')` at the decorator for all the Python wrapper class. :code:`fc` is the identifier of the layer.
- Implements :code:`__init__` constructor function.

@ -196,6 +196,6 @@ PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数
obj="process",
args={"src_dict_path": src_dict_path})
完整源码可参考 `sequence_recurrent <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/gserver/tests/sequence_recurrent.py>`_ 示例。
完整源码可参考 `sequence_recurrent <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/legacy/gserver/tests/sequence_recurrent.py>`_ 示例。

@ -18,7 +18,7 @@
</tr>
<tr>
<td>cpu_avx_openblas</td>
<td>暂无</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
<tr>
<td>cpu_noavx_openblas</td>
@ -35,7 +35,12 @@
<tr>
<td>cuda8.0_cudnn7_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr></tbody></table>
</tr>
<tr>
<td>cuda9.0_cudnn7_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda90cudnn7avxMkl/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
</tbody></table>
### 从源码编译

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save