modify format, and modify the layer grad test, op test

cblas_new
xzl 8 years ago
parent 81998868f0
commit 1f516fa0ef

File diff suppressed because it is too large Load Diff

@ -39,21 +39,22 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
filterShape_.resize(numInputs); filterShape_.resize(numInputs);
outputShape_.resize(numInputs); outputShape_.resize(numInputs);
string convType; std::string convType;
string convGradInputType; std::string convGradInputType;
string convGradFilterType; std::string convGradFilterType;
for (int i = 0; i < config_.inputs_size(); i++) { for (int i = 0; i < config_.inputs_size(); i++) {
std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]}; std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]};
std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]}; std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]};
if (useGpu_ && (size_t)groups_[i] == (size_t)channels_[i] && !isDeconv_) { if (useGpu_ && (size_t)groups_[i] == (size_t)channels_[i] && !isDeconv_) {
convType = "DepthwiseConv" convGradInputType = convType = "DepthwiseConv";
"DepthwiseConvGradInput" convGradFilterType = convGradInputType = "DepthwiseConvGradInput";
"DepthwiseConvGradFilter" convGradFilterType = "DepthwiseConvGradFilter";
} else { } else {
convType = "GemmConv" convGradInputType = convType = "GemmConv";
"GemmConvGradInput" convGradFilterType = "GemmConvGradFilter" convGradInputType = "GemmConvGradInput";
convGradFilterType = "GemmConvGradFilter";
} }
if (FLAGS_use_nnpack) { if (FLAGS_use_nnpack) {

@ -349,13 +349,13 @@ TEST(Layer, CosSimVecMatLayer) {
void testDepthwiseConvLayer(const string& type, bool useGpu) { void testDepthwiseConvLayer(const string& type, bool useGpu) {
TestConfig config; TestConfig config;
config.biasSize = 16; config.biasSize = 32;
config.layerConfig.set_type(type); config.layerConfig.set_type(type);
config.layerConfig.set_num_filters(16); config.layerConfig.set_num_filters(32);
config.layerConfig.set_partial_sum(1); config.layerConfig.set_partial_sum(1);
config.layerConfig.set_shared_biases(true); config.layerConfig.set_shared_biases(true);
config.inputDefs.push_back({INPUT_DATA, "layer_0", 2048, 192 / 2}); config.inputDefs.push_back({INPUT_DATA, "layer_0", 2048, 192});
LayerInputConfig* input = config.layerConfig.add_inputs(); LayerInputConfig* input = config.layerConfig.add_inputs();
ConvConfig* conv = input->mutable_conv_conf(); ConvConfig* conv = input->mutable_conv_conf();
conv->set_filter_size(2); conv->set_filter_size(2);
@ -388,8 +388,11 @@ void testDepthwiseConvLayer(const string& type, bool useGpu) {
} }
TEST(Layer, depthwiseConvLayer) { TEST(Layer, depthwiseConvLayer) {
// 'depthwise_conv' is a sepecial case of 'exconv' whose
// groups size equals to the input channels size.
testDepthwiseConvLayer("exconv", /* useGpu= */ false);
#ifndef PADDLE_ONLY_CPU #ifndef PADDLE_ONLY_CPU
testDepthwiseConvLayer("depthwise_conv", /* useGpu= */ true); testDepthwiseConvLayer("exconv", /* useGpu= */ true);
#endif #endif
} }

Loading…
Cancel
Save