parent
5f98500009
commit
1f5f79cbf5
@ -0,0 +1,59 @@
|
||||
from __future__ import print_function
|
||||
import numpy as np
|
||||
import paddle.v2 as paddle
|
||||
import paddle.v2.fluid as fluid
|
||||
|
||||
BATCH_SIZE = 128
|
||||
CLIP_MAX = 2e-6
|
||||
CLIP_MIN = -1e-6
|
||||
|
||||
prog = fluid.framework.Program()
|
||||
|
||||
with fluid.program_guard(main_program=prog):
|
||||
image = fluid.layers.data(name='x', shape=[784], dtype='float32')
|
||||
|
||||
hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
|
||||
hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
|
||||
predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
|
||||
|
||||
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
|
||||
|
||||
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
||||
avg_cost = fluid.layers.mean(x=cost)
|
||||
|
||||
prog_clip = prog.clone()
|
||||
prog_clip.block(0).var(hidden1.name).set_error_clip(
|
||||
fluid.clip.ErrorClipByValue(
|
||||
max=CLIP_MAX, min=CLIP_MIN))
|
||||
|
||||
avg_cost_clip = prog_clip.block(0).var(avg_cost.name)
|
||||
fluid.backward.append_backward(loss=avg_cost)
|
||||
fluid.backward.append_backward(
|
||||
loss=avg_cost_clip, callback=fluid.clip.error_clip_callback)
|
||||
|
||||
hidden1_grad = prog.block(0).var(hidden1.name + "@GRAD")
|
||||
hidden1_grad_clip = prog_clip.block(0).var(hidden1.name + "@GRAD")
|
||||
|
||||
train_reader = paddle.batch(
|
||||
paddle.reader.shuffle(
|
||||
paddle.dataset.mnist.train(), buf_size=8192),
|
||||
batch_size=BATCH_SIZE)
|
||||
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
|
||||
exe.run(fluid.default_startup_program())
|
||||
|
||||
count = 0
|
||||
for data in train_reader():
|
||||
count += 1
|
||||
if count > 5:
|
||||
break
|
||||
out = exe.run(prog, feed=feeder.feed(data), fetch_list=[hidden1_grad])
|
||||
out_clip = exe.run(prog_clip,
|
||||
feed=feeder.feed(data),
|
||||
fetch_list=[hidden1_grad_clip])
|
||||
if not (out[0].clip(min=CLIP_MIN, max=CLIP_MAX) == out_clip[0]).all():
|
||||
exit(1)
|
||||
|
||||
exit(0)
|
Loading…
Reference in new issue