add unique kernel and op (#17557)
parent
71af72b1c2
commit
206c44e2a8
@ -0,0 +1,61 @@
|
|||||||
|
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/unique_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class UniqueOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||||
|
"Input(X) of UniqueOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||||
|
"Output(Out) of UniqueOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("Index"),
|
||||||
|
"Output(Index) of UniqueOp should not be null.");
|
||||||
|
|
||||||
|
auto in_dims = ctx->GetInputDim("X");
|
||||||
|
PADDLE_ENFORCE(in_dims.size() == 1, "Input(X) should be a vector.");
|
||||||
|
|
||||||
|
ctx->SetOutputDim("Out", {-1});
|
||||||
|
ctx->SetOutputDim("Index", in_dims);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class UniqueOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
void Make() override {
|
||||||
|
AddInput("X", "Input tensor. It should be a 1-D tensor.");
|
||||||
|
AddAttr<int>("dtype", "data type for output index");
|
||||||
|
AddOutput("Out", "A unique subsequence for input tensor.");
|
||||||
|
AddOutput("Index",
|
||||||
|
"An index tensor pointing to unique subsequence, which has "
|
||||||
|
"identical shape with input tensor and int64 dtype.");
|
||||||
|
AddComment(R"DOC(
|
||||||
|
Return a unique subsequence for 1-D input tensor, and an index tensor pointing to this unique subsequence
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP_WITHOUT_GRADIENT(unique, ops::UniqueOp, ops::UniqueOpMaker);
|
||||||
|
REGISTER_OP_CPU_KERNEL(unique, ops::UniqueKernel<float>,
|
||||||
|
ops::UniqueKernel<double>, ops::UniqueKernel<int32_t>,
|
||||||
|
ops::UniqueKernel<int64_t>);
|
@ -0,0 +1,83 @@
|
|||||||
|
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include <cmath>
|
||||||
|
#include <unordered_map>
|
||||||
|
#include <utility>
|
||||||
|
#include <vector>
|
||||||
|
#include "paddle/fluid/framework/op_registry.h"
|
||||||
|
#include "paddle/fluid/operators/math/math_function.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
template <typename InT>
|
||||||
|
struct UniqueOpFunctor {
|
||||||
|
framework::Tensor* out_;
|
||||||
|
framework::Tensor* index_;
|
||||||
|
const framework::Tensor* in_;
|
||||||
|
|
||||||
|
UniqueOpFunctor(framework::Tensor* out, framework::Tensor* index,
|
||||||
|
const framework::Tensor* in)
|
||||||
|
: out_(out), index_(index), in_(in) {}
|
||||||
|
|
||||||
|
template <typename IndexT>
|
||||||
|
void apply() const {
|
||||||
|
auto* in_data = in_->data<InT>();
|
||||||
|
auto* index_data = index_->mutable_data<IndexT>(platform::CPUPlace());
|
||||||
|
|
||||||
|
int64_t j = 0;
|
||||||
|
|
||||||
|
// TODO(fangzeyang): Should optimize performance here.
|
||||||
|
std::unordered_map<InT, int64_t> dict;
|
||||||
|
std::vector<InT> uniq;
|
||||||
|
|
||||||
|
PADDLE_ENFORCE(in_->numel() < pow(2, 31),
|
||||||
|
"numel of Unique op input should less than INT_MAX");
|
||||||
|
|
||||||
|
for (auto i = 0; i < in_->numel(); i++) {
|
||||||
|
auto it = dict.find(in_data[i]);
|
||||||
|
if (it == dict.end()) {
|
||||||
|
dict.insert(std::make_pair(in_data[i], j));
|
||||||
|
uniq.push_back(in_data[i]);
|
||||||
|
index_data[i] = static_cast<IndexT>(j);
|
||||||
|
j++;
|
||||||
|
} else {
|
||||||
|
index_data[i] = static_cast<IndexT>(it->second);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
out_->Resize(framework::make_ddim({static_cast<int64_t>(uniq.size())}));
|
||||||
|
auto out_data = out_->mutable_data<InT>(platform::CPUPlace());
|
||||||
|
std::memcpy(out_data, uniq.data(), uniq.size() * sizeof(InT));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
class UniqueKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto data_type = static_cast<framework::proto::VarType::Type>(
|
||||||
|
context.Attr<int>("dtype"));
|
||||||
|
auto* x = context.Input<framework::Tensor>("X");
|
||||||
|
auto* out = context.Output<framework::Tensor>("Out");
|
||||||
|
auto* index = context.Output<framework::Tensor>("Index");
|
||||||
|
|
||||||
|
framework::VisitDataType(data_type, UniqueOpFunctor<T>(out, index, x));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,72 @@
|
|||||||
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
import paddle.fluid.core as core
|
||||||
|
from paddle.fluid.op import Operator
|
||||||
|
|
||||||
|
|
||||||
|
class TestUniqueOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "unique"
|
||||||
|
self.init_config()
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
def init_config(self):
|
||||||
|
self.inputs = {'X': np.array([2, 3, 3, 1, 5, 3], dtype='int64'), }
|
||||||
|
self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
|
||||||
|
self.outputs = {
|
||||||
|
'Out': np.array(
|
||||||
|
[2, 3, 1, 5], dtype='int64'),
|
||||||
|
'Index': np.array(
|
||||||
|
[0, 1, 1, 2, 3, 1], dtype='int32')
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class TestOne(TestUniqueOp):
|
||||||
|
def init_config(self):
|
||||||
|
self.inputs = {'X': np.array([2], dtype='int64'), }
|
||||||
|
self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
|
||||||
|
self.outputs = {
|
||||||
|
'Out': np.array(
|
||||||
|
[2], dtype='int64'),
|
||||||
|
'Index': np.array(
|
||||||
|
[0], dtype='int32')
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class TestRandom(TestUniqueOp):
|
||||||
|
def init_config(self):
|
||||||
|
self.inputs = {'X': np.random.randint(0, 100, (150, ), dtype='int64')}
|
||||||
|
self.attrs = {'dtype': int(core.VarDesc.VarType.INT64)}
|
||||||
|
np_unique, np_index, reverse_index = np.unique(self.inputs['X'], True,
|
||||||
|
True)
|
||||||
|
np_tuple = [(np_unique[i], np_index[i]) for i in range(len(np_unique))]
|
||||||
|
np_tuple.sort(key=lambda x: x[1])
|
||||||
|
target_out = np.array([i[0] for i in np_tuple], dtype='int64')
|
||||||
|
target_index = np.array(
|
||||||
|
[list(target_out).index(i) for i in self.inputs['X']],
|
||||||
|
dtype='int64')
|
||||||
|
|
||||||
|
self.outputs = {'Out': target_out, 'Index': target_index}
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue