randint API: remove out, devive, stop_gradient; add name (#25433)

* randint API: remove out, devive, stop_gradient; add name; test=develop

* test=develop

* test=develop

* test=develop
fix_copy_if_different
zhupengyang 5 years ago committed by GitHub
parent ca725c82f2
commit 2250120245
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -17,12 +17,9 @@ from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
import paddle
from paddle.fluid import core
from paddle import Program, program_guard
def output_hist(out):
@ -56,25 +53,10 @@ class TestRandintOp(OpTest):
class TestRandintOpError(unittest.TestCase):
def test_errors(self):
main_prog = Program()
start_prog = Program()
with program_guard(main_prog, start_prog):
def test_shape():
shape = np.array([2, 3])
paddle.randint(5, shape=shape, dtype='int32')
self.assertRaises(TypeError, test_shape)
def test_dtype():
paddle.randint(5, shape=[32, 32], dtype='float32')
self.assertRaises(TypeError, test_dtype)
def test_low_high():
paddle.randint(low=5, high=5, shape=[32, 32], dtype='int32')
self.assertRaises(ValueError, test_low_high)
with program_guard(Program(), Program()):
self.assertRaises(TypeError, paddle.randint, 5, shape=np.array([2]))
self.assertRaises(TypeError, paddle.randint, 5, dtype='float32')
self.assertRaises(ValueError, paddle.randint, 5, 5)
class TestRandintOp_attr_tensorlist(OpTest):
@ -127,46 +109,44 @@ class TestRandint_attr_tensor(OpTest):
# Test python API
class TestRandintAPI(unittest.TestCase):
def test_api(self):
startup_program = fluid.Program()
train_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
with program_guard(Program(), Program()):
# results are from [0, 5).
output1 = paddle.randint(5)
out1 = paddle.randint(5)
# shape is a list and dtype is 'int32'
output2 = paddle.randint(
out2 = paddle.randint(
low=-100, high=100, shape=[64, 64], dtype='int32')
# shape is a tuple and dtype is 'int64'
output3 = paddle.randint(
out3 = paddle.randint(
low=-100, high=100, shape=(32, 32, 3), dtype='int64')
# shape is a tensorlist and dtype is 'float32'
dim_1 = fluid.layers.fill_constant([1], "int64", 32)
dim_2 = fluid.layers.fill_constant([1], "int32", 50)
output4 = paddle.randint(
low=-100, high=100, shape=[dim_1, 5], dtype='int32')
dim_1 = paddle.fill_constant([1], "int64", 32)
dim_2 = paddle.fill_constant([1], "int32", 50)
out4 = paddle.randint(
low=-100, high=100, shape=[dim_1, 5, dim_2], dtype='int32')
# shape is a tensor and dtype is 'float64'
var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
output5 = paddle.randint(
var_shape = paddle.nn.data(
name='var_shape', shape=[2], dtype="int64")
out5 = paddle.randint(
low=1, high=1000, shape=var_shape, dtype='int64')
place = fluid.CPUPlace()
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(startup_program)
place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
) else paddle.CPUPlace()
exe = paddle.Executor(place)
outs = exe.run(
train_program,
feed={'var_shape': np.array([100, 100]).astype('int64')},
fetch_list=[output1, output2, output3, output4, output5])
fetch_list=[out1, out2, out3, out4, out5])
class TestRandintDygraphMode(unittest.TestCase):
def test_check_output(self):
with fluid.dygraph.guard():
x = paddle.randint(10, shape=[10], dtype="int32")
x_np = x.numpy()
for i in range(10):
self.assertTrue((x_np[i] >= 0 and x_np[i] < 10))
class TestRandintImperative(unittest.TestCase):
def test_api(self):
n = 10
with paddle.imperative.guard():
x1 = paddle.randint(n, shape=[10], dtype="int32")
x2 = paddle.tensor.randint(n)
x3 = paddle.tensor.random.randint(n)
for i in [x1, x2, x3]:
for j in i.numpy().tolist():
self.assertTrue((j >= 0 and j < n))
if __name__ == "__main__":

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save