|
|
|
@ -37,172 +37,111 @@ __all__ = [
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def randint(low,
|
|
|
|
|
high=None,
|
|
|
|
|
shape=None,
|
|
|
|
|
out=None,
|
|
|
|
|
dtype=None,
|
|
|
|
|
device=None,
|
|
|
|
|
stop_gradient=False,
|
|
|
|
|
seed=0,
|
|
|
|
|
name=None):
|
|
|
|
|
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
|
|
|
|
|
"""
|
|
|
|
|
:alias_main: paddle.randint
|
|
|
|
|
:alias: paddle.randint,paddle.tensor.randint,paddle.tensor.random.randint
|
|
|
|
|
|
|
|
|
|
This function returns a Tensor filled with random integers from the "discrete uniform" distribution of the
|
|
|
|
|
specified data type in the interval [low, high). If high is None (the default), then results are from [0, low).
|
|
|
|
|
This function returns a Tensor filled with random integers from the
|
|
|
|
|
"discrete uniform" distribution of the specified data type in the interval
|
|
|
|
|
[low, high). If high is None (the default), then results are from [0, low).
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
low (int): The lower bound on the range of random values to generate, the low is included in the range.
|
|
|
|
|
(unless high=None, in which case this parameter is one above the highest such integer).
|
|
|
|
|
high (int, optional): The upper bound on the range of random values to generate, the high is excluded
|
|
|
|
|
in the range. Default None(see above for behavior if high=None).
|
|
|
|
|
shape (list|tuple|Variable, optional): The shape of the output Tensor, if the shape is a list or tuple,
|
|
|
|
|
its elements can be an integer
|
|
|
|
|
or a Tensor with the shape [1], and the type of the Tensor must be int32 or int64.
|
|
|
|
|
If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor must be
|
|
|
|
|
int32 or int64. Default is None, in which case the shape is [1].
|
|
|
|
|
out(Variable, optional): Optional output which can be any created
|
|
|
|
|
Variable that meets the requirements to store the result of operation.
|
|
|
|
|
if out is None, a new Varibale will be create to store the result.
|
|
|
|
|
dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output Tensor
|
|
|
|
|
which can be int32, int64, if dytpe is `None`, the data
|
|
|
|
|
type of created Tensor is `int64`
|
|
|
|
|
device(str, optional): This parameter specifies that the Tensor is created
|
|
|
|
|
on the GPU or CPU.
|
|
|
|
|
stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable,
|
|
|
|
|
default value is False.
|
|
|
|
|
seed (int, optional): Random seed used for permute samples. If seed is
|
|
|
|
|
equal to 0, it means use a seed generated by the system. Note that
|
|
|
|
|
if seed is not 0, this operator will always generate the same random
|
|
|
|
|
permutation every time. Default: 0.
|
|
|
|
|
name(str, optional): The default value is None. Normally there is no need for user to set this
|
|
|
|
|
property. For more information, please refer to :ref:`api_guide_Name`.
|
|
|
|
|
low (int): The lower bound on the range of random values to generate,
|
|
|
|
|
the low is included in the range.(unless high=None, in which case
|
|
|
|
|
this parameter is one above the highest such integer). Default is 0.
|
|
|
|
|
high (int, optional): The upper bound on the range of random values to
|
|
|
|
|
generate, the high is excluded in the range. Default is None(see
|
|
|
|
|
above for behavior if high=None).
|
|
|
|
|
shape (list|tuple|Variable, optional): The shape of the output Tensor,
|
|
|
|
|
if the shape is a list or tuple, its elements can be an integer or
|
|
|
|
|
a Tensor with the shape [1], and the type of the Tensor must be
|
|
|
|
|
int32 or int64. If the shape is a Variable, it is a 1-D Tensor,
|
|
|
|
|
and the type of the Tensor must be int32 or int64. Default is None.
|
|
|
|
|
dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the
|
|
|
|
|
output Tensor which can be int32, int64. If dtype is `None`, the
|
|
|
|
|
data type of created Tensor is `int64`
|
|
|
|
|
name(str, optional): The default value is None. Normally there is no
|
|
|
|
|
need for user to set this property. For more information, please
|
|
|
|
|
refer to :ref:`api_guide_Name`.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Variable: A Tensor of the specified shape filled with random integers.
|
|
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
|
TypeError: Randint's low must less then high.
|
|
|
|
|
TypeError: If shape's type is not list, tuple or Variable.
|
|
|
|
|
TypeError: If dtype is not int32 or int64.
|
|
|
|
|
ValueError: If low is not large then high; If low is 0, and high is None.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
paddle.enable_imperative()
|
|
|
|
|
|
|
|
|
|
# example 1:
|
|
|
|
|
# attr shape is a list which doesn't contain tensor Variable.
|
|
|
|
|
result_1 = paddle.randint(low=-5, high=5, shape=[3, 4], dtype="int64")
|
|
|
|
|
result_1 = paddle.randint(low=-5, high=5, shape=[3])
|
|
|
|
|
# [0 -3 2]
|
|
|
|
|
|
|
|
|
|
# example 2:
|
|
|
|
|
# attr shape is a list which contains tensor Variable.
|
|
|
|
|
dim_1 = fluid.layers.fill_constant([1],"int64",3)
|
|
|
|
|
dim_2 = fluid.layers.fill_constant([1],"int32",5)
|
|
|
|
|
dim_1 = paddle.fill_constant([1],"int64",2)
|
|
|
|
|
dim_2 = paddle.fill_constant([1],"int32",3)
|
|
|
|
|
result_2 = paddle.randint(low=-5, high=5, shape=[dim_1, dim_2], dtype="int32")
|
|
|
|
|
print(result_2.numpy())
|
|
|
|
|
# [[ 0 -1 -3]
|
|
|
|
|
# [ 4 -2 0]]
|
|
|
|
|
|
|
|
|
|
# example 3:
|
|
|
|
|
# attr shape is a Variable, the data type must be int64 or int32.
|
|
|
|
|
var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
|
|
|
|
|
result_3 = paddle.randint(low=-5, high=5, shape=var_shape, dtype="int32")
|
|
|
|
|
var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
|
|
|
|
|
result_4 = paddle.randint(low=-5, high=5, shape=var_shape_int32, dtype="int64")
|
|
|
|
|
# attr shape is a Variable
|
|
|
|
|
var_shape = paddle.imperative.to_variable(np.array([3]))
|
|
|
|
|
result_3 = paddle.randint(low=-5, high=5, shape=var_shape)
|
|
|
|
|
# [-2 2 3]
|
|
|
|
|
|
|
|
|
|
# example 4:
|
|
|
|
|
# data type is int32
|
|
|
|
|
result_4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
|
|
|
|
|
# [-5 4 -4]
|
|
|
|
|
|
|
|
|
|
# example 5:
|
|
|
|
|
# Input only one parameter
|
|
|
|
|
# low=0, high=10, shape=[1], dtype='int64'
|
|
|
|
|
result_4 = paddle.randint(10)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def get_new_shape_tensor(list_shape):
|
|
|
|
|
new_shape_tensor = []
|
|
|
|
|
for dim in list_shape:
|
|
|
|
|
if isinstance(dim, Variable):
|
|
|
|
|
dim.stop_gradient = True
|
|
|
|
|
new_shape_tensor.append(dim)
|
|
|
|
|
else:
|
|
|
|
|
assert isinstance(dim, int) or isinstance(dim, long)
|
|
|
|
|
temp_out = helper.create_variable_for_type_inference('int64')
|
|
|
|
|
fill_constant([1], 'int64', dim, force_cpu=True, out=temp_out)
|
|
|
|
|
new_shape_tensor.append(temp_out)
|
|
|
|
|
return new_shape_tensor
|
|
|
|
|
|
|
|
|
|
def get_attr_shape(list_shape):
|
|
|
|
|
unk_dim_idx = -1
|
|
|
|
|
attrs_shape = []
|
|
|
|
|
for dim_idx, dim_size in enumerate(list_shape):
|
|
|
|
|
if isinstance(dim_size, Variable):
|
|
|
|
|
attrs_shape.append(-1)
|
|
|
|
|
else:
|
|
|
|
|
attrs_shape.append(dim_size)
|
|
|
|
|
assert dim_size > 0, (
|
|
|
|
|
"Each dimension size given in shape must not be negative "
|
|
|
|
|
"except one unknown dimension.")
|
|
|
|
|
return attrs_shape
|
|
|
|
|
result_5 = paddle.randint(10)
|
|
|
|
|
# [7]
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
if high is None:
|
|
|
|
|
high = low
|
|
|
|
|
low = 0
|
|
|
|
|
if dtype is None:
|
|
|
|
|
dtype = 'int64'
|
|
|
|
|
check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
|
|
|
|
|
|
|
|
|
|
inputs = dict()
|
|
|
|
|
attrs = dict()
|
|
|
|
|
|
|
|
|
|
if shape is None:
|
|
|
|
|
shape = [1]
|
|
|
|
|
assert len(shape) > 0, ("The size of argument(shape) can't be zero.")
|
|
|
|
|
|
|
|
|
|
helper = LayerHelper("randint", **locals())
|
|
|
|
|
if not isinstance(dtype, core.VarDesc.VarType):
|
|
|
|
|
dtype = convert_np_dtype_to_dtype_(dtype)
|
|
|
|
|
|
|
|
|
|
if in_dygraph_mode():
|
|
|
|
|
attrs['shape'] = shape
|
|
|
|
|
else:
|
|
|
|
|
if isinstance(shape, Variable):
|
|
|
|
|
shape.stop_gradient = True
|
|
|
|
|
inputs["ShapeTensor"] = shape
|
|
|
|
|
elif isinstance(shape, (list, tuple)):
|
|
|
|
|
assert len(shape) > 0, (
|
|
|
|
|
"The size of argument(shape) can't be zero.")
|
|
|
|
|
if utils._contain_var(shape):
|
|
|
|
|
inputs['ShapeTensorList'] = get_new_shape_tensor(shape)
|
|
|
|
|
else:
|
|
|
|
|
attrs["shape"] = get_attr_shape(shape)
|
|
|
|
|
check_type(shape, 'shape', (list, tuple, Variable), 'randint')
|
|
|
|
|
shape = utils._convert_shape_to_list(shape)
|
|
|
|
|
return core.ops.randint('shape', shape, 'low', low, 'high', high,
|
|
|
|
|
'seed', 0, 'dtype', dtype)
|
|
|
|
|
|
|
|
|
|
if high is None:
|
|
|
|
|
high = low
|
|
|
|
|
low = 0
|
|
|
|
|
attrs['low'] = low
|
|
|
|
|
attrs['high'] = high
|
|
|
|
|
attrs['seed'] = seed
|
|
|
|
|
if (low >= high):
|
|
|
|
|
check_type(shape, 'shape', (list, tuple, Variable), 'randint')
|
|
|
|
|
check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
|
|
|
|
|
if low >= high:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"randint's low must less then high, but received low = {0}, "
|
|
|
|
|
"high = {1}".format(low, high))
|
|
|
|
|
|
|
|
|
|
if out is None:
|
|
|
|
|
if name is None:
|
|
|
|
|
inputs = dict()
|
|
|
|
|
attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
|
|
|
|
|
utils._get_shape_tensor_inputs(
|
|
|
|
|
inputs=inputs, attrs=attrs, shape=shape, op_type='randint')
|
|
|
|
|
|
|
|
|
|
helper = LayerHelper("randint", **locals())
|
|
|
|
|
out = helper.create_variable_for_type_inference(dtype=dtype)
|
|
|
|
|
else:
|
|
|
|
|
out = helper.create_variable(
|
|
|
|
|
name=name, dtype=dtype, persistable=False)
|
|
|
|
|
else:
|
|
|
|
|
check_dtype(dtype, 'dtype',
|
|
|
|
|
convert_dtype(out.dtype), 'randint',
|
|
|
|
|
"(The dtype in randint must be the same with out's dtype.)")
|
|
|
|
|
attrs['dtype'] = out.dtype
|
|
|
|
|
out.stop_gradient = stop_gradient
|
|
|
|
|
|
|
|
|
|
if device is None:
|
|
|
|
|
helper.append_op(
|
|
|
|
|
type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
|
|
|
|
|
else:
|
|
|
|
|
with device_guard(device):
|
|
|
|
|
helper.append_op(
|
|
|
|
|
type='randint',
|
|
|
|
|
inputs=inputs,
|
|
|
|
|
outputs={'Out': out},
|
|
|
|
|
attrs=attrs)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|