parent
dd894c29ab
commit
22b9b6662b
@ -0,0 +1 @@
|
||||
do_not_matter.txt
|
@ -0,0 +1,23 @@
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
settings(batch_size=128, learning_method=AdaGradOptimizer(), learning_rate=1e-4)
|
||||
|
||||
file_list = 'trainer/tests/fake_file_list.list'
|
||||
|
||||
define_py_data_sources2(
|
||||
train_list=file_list,
|
||||
test_list=file_list,
|
||||
module="simple_sparse_neural_network_dp",
|
||||
obj="process")
|
||||
|
||||
embedding = embedding_layer(
|
||||
input=data_layer(
|
||||
name="word_ids", size=65536),
|
||||
size=128,
|
||||
param_attr=ParamAttr(sparse_update=True))
|
||||
prediction = fc_layer(input=embedding, size=10, act=SoftmaxActivation())
|
||||
|
||||
outputs(
|
||||
classification_cost(
|
||||
input=prediction, label=data_layer(
|
||||
name='label', size=10)))
|
@ -0,0 +1,21 @@
|
||||
from paddle.trainer.PyDataProvider2 import provider, integer_sequence, integer_value
|
||||
import random
|
||||
|
||||
|
||||
def init_hook(settings, is_train, **kwargs):
|
||||
settings.is_train = is_train
|
||||
|
||||
|
||||
@provider(
|
||||
input_types={'word_ids': integer_value(65536),
|
||||
'label': integer_value(10)},
|
||||
min_pool_size=0,
|
||||
init_hook=init_hook)
|
||||
def process(settings, filename):
|
||||
if settings.is_train:
|
||||
data_size = 2**20
|
||||
else:
|
||||
data_size = 2**10
|
||||
|
||||
for _ in xrange(data_size):
|
||||
yield random.randint(0, 65535), random.randint(0, 9)
|
Loading…
Reference in new issue