refine documents

feature/design_of_v2_layer_converter
dangqingqing 8 years ago
parent 737b4e6867
commit 22f2519eba

@ -5286,10 +5286,7 @@ def multi_binary_label_cross_entropy(input,
def smooth_l1_cost(input, label, name=None, layer_attr=None):
"""
This is a L1 loss but more smooth. It requires that the
size of input and label are equal.
More details can be found by referring to `Fast R-CNN
<https://arxiv.org/pdf/1504.08083v2.pdf>`_
size of input and label are equal. The formula is as follows,
.. math::
@ -5305,6 +5302,9 @@ def smooth_l1_cost(input, label, name=None, layer_attr=None):
|x|-0.5& \text{otherwise}
\end{cases}
More details can be found by referring to `Fast R-CNN
<https://arxiv.org/pdf/1504.08083v2.pdf>`_
.. code-block:: python
cost = smooth_l1_cost(input=input_layer,

Loading…
Cancel
Save