Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into fix-sgd
commit
230e613c6f
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,43 @@
|
|||||||
|
import unittest
|
||||||
|
import numpy
|
||||||
|
from paddle.v2.framework.op import Operator
|
||||||
|
from gradient_checker import GradientChecker
|
||||||
|
from gradient_checker import get_numeric_gradient
|
||||||
|
|
||||||
|
|
||||||
|
class GetNumericGradientTest(unittest.TestCase):
|
||||||
|
def test_add_op(self):
|
||||||
|
add_op = Operator('add_two', X="X", Y="Y", Out="Z")
|
||||||
|
x = numpy.random.random((10, 1)).astype("float32")
|
||||||
|
y = numpy.random.random((10, 1)).astype("float32")
|
||||||
|
|
||||||
|
arr = get_numeric_gradient(add_op, {'X': x, "Y": y}, 'Z', 'X')
|
||||||
|
self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-4)
|
||||||
|
|
||||||
|
def test_softmax_op(self):
|
||||||
|
def stable_softmax(x):
|
||||||
|
"""Compute the softmax of vector x in a numerically stable way."""
|
||||||
|
shiftx = x - numpy.max(x)
|
||||||
|
exps = numpy.exp(shiftx)
|
||||||
|
return exps / numpy.sum(exps)
|
||||||
|
|
||||||
|
def label_softmax_grad(Y, dY):
|
||||||
|
dX = Y * 0.0
|
||||||
|
for i in range(Y.shape[0]):
|
||||||
|
d = numpy.dot(Y[i, :], dY[i, :])
|
||||||
|
dX[i, :] = Y[i, :] * (dY[i, :] - d)
|
||||||
|
return dX
|
||||||
|
|
||||||
|
softmax_op = Operator("softmax", X="X", Y="Y")
|
||||||
|
|
||||||
|
X = numpy.random.random((2, 2)).astype("float32")
|
||||||
|
Y = numpy.apply_along_axis(stable_softmax, 1, X)
|
||||||
|
dY = numpy.ones(Y.shape)
|
||||||
|
dX = label_softmax_grad(Y, dY)
|
||||||
|
|
||||||
|
arr = get_numeric_gradient(softmax_op, {"X": X}, 'Y', 'X')
|
||||||
|
numpy.testing.assert_almost_equal(arr, dX, decimal=1e-2)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue