|
|
|
@ -72,4 +72,174 @@ TEST(math_function, trans_mul_notrans) {
|
|
|
|
|
EXPECT_EQ(out_ptr[8], 29);
|
|
|
|
|
delete gpu_place;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(math_function, gemm_notrans_cublas) {
|
|
|
|
|
paddle::framework::Tensor input1;
|
|
|
|
|
paddle::framework::Tensor input2;
|
|
|
|
|
paddle::framework::Tensor input3;
|
|
|
|
|
paddle::framework::Tensor input1_gpu;
|
|
|
|
|
paddle::framework::Tensor input2_gpu;
|
|
|
|
|
paddle::framework::Tensor input3_gpu;
|
|
|
|
|
|
|
|
|
|
int m = 2;
|
|
|
|
|
int n = 3;
|
|
|
|
|
int k = 3;
|
|
|
|
|
auto* cpu_place = new paddle::platform::CPUPlace();
|
|
|
|
|
float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
|
|
|
|
|
float arr1[6] = {0, 1, 2, 3, 4, 5};
|
|
|
|
|
memcpy(input1_ptr, arr1, 6 * sizeof(float));
|
|
|
|
|
float* input2_ptr = input2.mutable_data<float>({3, 4}, *cpu_place);
|
|
|
|
|
float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
|
|
|
|
|
memcpy(input2_ptr, arr2, 12 * sizeof(float));
|
|
|
|
|
float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
|
|
|
|
|
float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
|
|
|
|
|
memcpy(input3_ptr, arr3, 8 * sizeof(float));
|
|
|
|
|
|
|
|
|
|
auto* gpu_place = new paddle::platform::GPUPlace(0);
|
|
|
|
|
paddle::platform::CUDADeviceContext context(*gpu_place);
|
|
|
|
|
|
|
|
|
|
input1_gpu.CopyFrom<float>(input1, *gpu_place);
|
|
|
|
|
input2_gpu.CopyFrom<float>(input2, *gpu_place);
|
|
|
|
|
input3_gpu.CopyFrom<float>(input3, *gpu_place);
|
|
|
|
|
float* a = input1_gpu.data<float>();
|
|
|
|
|
float* b = input2_gpu.data<float>();
|
|
|
|
|
float* c = input3_gpu.mutable_data<float>(*gpu_place);
|
|
|
|
|
|
|
|
|
|
paddle::operators::math::gemm<paddle::platform::GPUPlace, float>(
|
|
|
|
|
context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4);
|
|
|
|
|
|
|
|
|
|
input3.CopyFrom<float>(input3_gpu, *cpu_place);
|
|
|
|
|
|
|
|
|
|
// numpy code:
|
|
|
|
|
// a = np.arange(6).reshape(2, 3)
|
|
|
|
|
// b = np.arange(12).reshape(3, 4)[:, 1:]
|
|
|
|
|
// c = np.arange(8).reshape(2, 4)[:, 1:]
|
|
|
|
|
// out = np.arange(8).reshape(2, 4)
|
|
|
|
|
// out[:, 1:] = np.dot(a, b) + c
|
|
|
|
|
EXPECT_EQ(input3_ptr[0], 0);
|
|
|
|
|
EXPECT_EQ(input3_ptr[1], 24);
|
|
|
|
|
EXPECT_EQ(input3_ptr[2], 28);
|
|
|
|
|
EXPECT_EQ(input3_ptr[3], 32);
|
|
|
|
|
EXPECT_EQ(input3_ptr[4], 4);
|
|
|
|
|
EXPECT_EQ(input3_ptr[5], 73);
|
|
|
|
|
EXPECT_EQ(input3_ptr[6], 86);
|
|
|
|
|
EXPECT_EQ(input3_ptr[7], 99);
|
|
|
|
|
delete gpu_place;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(math_function, gemm_trans_cublas) {
|
|
|
|
|
paddle::framework::Tensor input1;
|
|
|
|
|
paddle::framework::Tensor input2;
|
|
|
|
|
paddle::framework::Tensor input3;
|
|
|
|
|
paddle::framework::Tensor input1_gpu;
|
|
|
|
|
paddle::framework::Tensor input2_gpu;
|
|
|
|
|
paddle::framework::Tensor input3_gpu;
|
|
|
|
|
|
|
|
|
|
int m = 2;
|
|
|
|
|
int n = 3;
|
|
|
|
|
int k = 3;
|
|
|
|
|
auto* cpu_place = new paddle::platform::CPUPlace();
|
|
|
|
|
float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
|
|
|
|
|
float arr1[6] = {0, 1, 2, 3, 4, 5};
|
|
|
|
|
memcpy(input1_ptr, arr1, 6 * sizeof(float));
|
|
|
|
|
float* input2_ptr = input2.mutable_data<float>({4, 3}, *cpu_place);
|
|
|
|
|
float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
|
|
|
|
|
memcpy(input2_ptr, arr2, 12 * sizeof(float));
|
|
|
|
|
float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
|
|
|
|
|
float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
|
|
|
|
|
memcpy(input3_ptr, arr3, 8 * sizeof(float));
|
|
|
|
|
|
|
|
|
|
auto* gpu_place = new paddle::platform::GPUPlace(0);
|
|
|
|
|
paddle::platform::CUDADeviceContext context(*gpu_place);
|
|
|
|
|
|
|
|
|
|
input1_gpu.CopyFrom<float>(input1, *gpu_place);
|
|
|
|
|
input2_gpu.CopyFrom<float>(input2, *gpu_place);
|
|
|
|
|
input3_gpu.CopyFrom<float>(input3, *gpu_place);
|
|
|
|
|
float* a = input1_gpu.data<float>();
|
|
|
|
|
float* b = input2_gpu.data<float>();
|
|
|
|
|
float* c = input3_gpu.mutable_data<float>(*gpu_place);
|
|
|
|
|
|
|
|
|
|
paddle::operators::math::gemm<paddle::platform::GPUPlace, float>(
|
|
|
|
|
context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4);
|
|
|
|
|
|
|
|
|
|
input3.CopyFrom<float>(input3_gpu, *cpu_place);
|
|
|
|
|
|
|
|
|
|
EXPECT_EQ(input3_ptr[0], 0);
|
|
|
|
|
EXPECT_EQ(input3_ptr[1], 24);
|
|
|
|
|
EXPECT_EQ(input3_ptr[2], 28);
|
|
|
|
|
EXPECT_EQ(input3_ptr[3], 32);
|
|
|
|
|
EXPECT_EQ(input3_ptr[4], 4);
|
|
|
|
|
EXPECT_EQ(input3_ptr[5], 73);
|
|
|
|
|
EXPECT_EQ(input3_ptr[6], 86);
|
|
|
|
|
EXPECT_EQ(input3_ptr[7], 99);
|
|
|
|
|
delete gpu_place;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
TEST(math_function, gemm_notrans_cblas) {
|
|
|
|
|
paddle::framework::Tensor input1;
|
|
|
|
|
paddle::framework::Tensor input2;
|
|
|
|
|
paddle::framework::Tensor input3;
|
|
|
|
|
|
|
|
|
|
int m = 2;
|
|
|
|
|
int n = 3;
|
|
|
|
|
int k = 3;
|
|
|
|
|
auto* cpu_place = new paddle::platform::CPUPlace();
|
|
|
|
|
float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
|
|
|
|
|
float arr1[6] = {0, 1, 2, 3, 4, 5};
|
|
|
|
|
memcpy(input1_ptr, arr1, 6 * sizeof(float));
|
|
|
|
|
float* input2_ptr = input2.mutable_data<float>({3, 4}, *cpu_place);
|
|
|
|
|
float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
|
|
|
|
|
memcpy(input2_ptr, arr2, 12 * sizeof(float));
|
|
|
|
|
float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
|
|
|
|
|
float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
|
|
|
|
|
memcpy(input3_ptr, arr3, 8 * sizeof(float));
|
|
|
|
|
|
|
|
|
|
paddle::platform::CPUDeviceContext context(*cpu_place);
|
|
|
|
|
paddle::operators::math::gemm<paddle::platform::CPUPlace, float>(
|
|
|
|
|
context, false, false, m, n, k, 1, input1_ptr, 3, input2_ptr + 1, 4, 1,
|
|
|
|
|
input3_ptr + 1, 4);
|
|
|
|
|
|
|
|
|
|
EXPECT_EQ(input3_ptr[0], 0);
|
|
|
|
|
EXPECT_EQ(input3_ptr[1], 24);
|
|
|
|
|
EXPECT_EQ(input3_ptr[2], 28);
|
|
|
|
|
EXPECT_EQ(input3_ptr[3], 32);
|
|
|
|
|
EXPECT_EQ(input3_ptr[4], 4);
|
|
|
|
|
EXPECT_EQ(input3_ptr[5], 73);
|
|
|
|
|
EXPECT_EQ(input3_ptr[6], 86);
|
|
|
|
|
EXPECT_EQ(input3_ptr[7], 99);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(math_function, gemm_trans_clbas) {
|
|
|
|
|
paddle::framework::Tensor input1;
|
|
|
|
|
paddle::framework::Tensor input2;
|
|
|
|
|
paddle::framework::Tensor input3;
|
|
|
|
|
|
|
|
|
|
int m = 2;
|
|
|
|
|
int n = 3;
|
|
|
|
|
int k = 3;
|
|
|
|
|
auto* cpu_place = new paddle::platform::CPUPlace();
|
|
|
|
|
float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
|
|
|
|
|
float arr1[6] = {0, 1, 2, 3, 4, 5};
|
|
|
|
|
memcpy(input1_ptr, arr1, 6 * sizeof(float));
|
|
|
|
|
float* input2_ptr = input2.mutable_data<float>({4, 3}, *cpu_place);
|
|
|
|
|
float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
|
|
|
|
|
memcpy(input2_ptr, arr2, 12 * sizeof(float));
|
|
|
|
|
float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
|
|
|
|
|
float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
|
|
|
|
|
memcpy(input3_ptr, arr3, 8 * sizeof(float));
|
|
|
|
|
|
|
|
|
|
paddle::platform::CPUDeviceContext context(*cpu_place);
|
|
|
|
|
paddle::operators::math::gemm<paddle::platform::CPUPlace, float>(
|
|
|
|
|
context, false, true, m, n, k, 1, input1_ptr, 3, input2_ptr + 3, 3, 1,
|
|
|
|
|
input3_ptr + 1, 4);
|
|
|
|
|
|
|
|
|
|
EXPECT_EQ(input3_ptr[0], 0);
|
|
|
|
|
EXPECT_EQ(input3_ptr[1], 24);
|
|
|
|
|
EXPECT_EQ(input3_ptr[2], 28);
|
|
|
|
|
EXPECT_EQ(input3_ptr[3], 32);
|
|
|
|
|
EXPECT_EQ(input3_ptr[4], 4);
|
|
|
|
|
EXPECT_EQ(input3_ptr[5], 73);
|
|
|
|
|
EXPECT_EQ(input3_ptr[6], 86);
|
|
|
|
|
EXPECT_EQ(input3_ptr[7], 99);
|
|
|
|
|
}
|
|
|
|
|