Refine regularization for selected_rows (#12369)
* refine regularization for selected_rows * clean lookup_table * refine rpc_server_test * temporally disable rpc_server_test * fix rpc_server_test * add unit testbugfix/anakin-compile
parent
85c4912755
commit
2409d0f710
@ -0,0 +1,103 @@
|
|||||||
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
#include "paddle/fluid/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class ExtractRowsOpInferShape : public framework::InferShapeBase {
|
||||||
|
public:
|
||||||
|
void operator()(framework::InferShapeContext *ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||||
|
"Input(X) of ExtractRowsOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||||
|
"Output(Out) of ExtractRowsOp should not be null.");
|
||||||
|
PADDLE_ENFORCE_EQ(ctx->GetInputsVarType("X")[0],
|
||||||
|
framework::proto::VarType::SELECTED_ROWS,
|
||||||
|
"The type of input(X) must be SelectedRows.");
|
||||||
|
auto in_dims = ctx->GetInputDim("X");
|
||||||
|
|
||||||
|
ctx->SetOutputDim(
|
||||||
|
"Out", framework::make_ddim(std::vector<int64_t>{in_dims[0], 1}));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class ExtractRowsOp : public framework::OperatorBase {
|
||||||
|
public:
|
||||||
|
ExtractRowsOp(const std::string &type,
|
||||||
|
const framework::VariableNameMap &inputs,
|
||||||
|
const framework::VariableNameMap &outputs,
|
||||||
|
const framework::AttributeMap &attrs)
|
||||||
|
: framework::OperatorBase(type, inputs, outputs, attrs) {}
|
||||||
|
|
||||||
|
private:
|
||||||
|
void RunImpl(const framework::Scope &scope,
|
||||||
|
const platform::Place &place) const override {
|
||||||
|
auto &in = scope.FindVar(Input("X"))->Get<framework::SelectedRows>();
|
||||||
|
auto out = scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
|
||||||
|
|
||||||
|
auto in_rows = in.rows();
|
||||||
|
auto out_dim = framework::make_ddim(
|
||||||
|
std::vector<int64_t>{static_cast<int64_t>(in_rows.size()), 1});
|
||||||
|
auto dst_ptr = out->mutable_data<int64_t>(out_dim, in.place());
|
||||||
|
|
||||||
|
if (paddle::platform::is_gpu_place(in.place())) {
|
||||||
|
#ifdef PADDLE_WITH_CUDA
|
||||||
|
platform::DeviceContextPool &pool =
|
||||||
|
platform::DeviceContextPool::Instance();
|
||||||
|
auto *dev_ctx = pool.Get(in.place());
|
||||||
|
auto src_ptr = in_rows.Data(in.place());
|
||||||
|
auto stream =
|
||||||
|
reinterpret_cast<const platform::CUDADeviceContext &>(*dev_ctx)
|
||||||
|
.stream();
|
||||||
|
memory::Copy(boost::get<platform::CUDAPlace>(out->place()), dst_ptr,
|
||||||
|
boost::get<platform::CUDAPlace>(in.place()), src_ptr,
|
||||||
|
in_rows.size() * sizeof(int64_t), stream);
|
||||||
|
#else
|
||||||
|
PADDLE_THROW("Not compiled with CUDA.");
|
||||||
|
#endif
|
||||||
|
} else {
|
||||||
|
memory::Copy(platform::CPUPlace(), dst_ptr, platform::CPUPlace(),
|
||||||
|
in_rows.data(), in_rows.size() * sizeof(int64_t));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class ExtractRowsOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
void Make() override {
|
||||||
|
AddInput("X",
|
||||||
|
"(SelectedRows). The input tensor of extract_rows operator,"
|
||||||
|
" and its type is SelectedRows.");
|
||||||
|
AddOutput("Out", "(Tensor). The the rows of input(X).");
|
||||||
|
|
||||||
|
AddComment(R"DOC(
|
||||||
|
ExtractRows Operator.
|
||||||
|
|
||||||
|
The function of extract_rows_op is extracting the rows from the input(X)
|
||||||
|
whose type is SelectedRows.
|
||||||
|
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OPERATOR(extract_rows, ops::ExtractRowsOp, ops::ExtractRowsOpMaker,
|
||||||
|
ops::ExtractRowsOpInferShape);
|
@ -0,0 +1,58 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
import paddle.fluid.core as core
|
||||||
|
from paddle.fluid.op import Operator
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
class TestExtractRows(OpTest):
|
||||||
|
def check_with_place(self, place):
|
||||||
|
scope = core.Scope()
|
||||||
|
|
||||||
|
# create and initialize Variable
|
||||||
|
feature_len = 12
|
||||||
|
rows = [0, 4, 4, 7]
|
||||||
|
np_array = np.ones((len(rows), feature_len)).astype("float32")
|
||||||
|
|
||||||
|
in_x = scope.var('X').get_selected_rows()
|
||||||
|
in_x.set_height(len(rows))
|
||||||
|
in_x.set_rows(rows)
|
||||||
|
in_x_tensor = in_x.get_tensor()
|
||||||
|
in_x_tensor.set(np_array, place)
|
||||||
|
|
||||||
|
# create Out Variable
|
||||||
|
out_tensor = scope.var('Out').get_tensor()
|
||||||
|
|
||||||
|
# create and run lookup_table operator
|
||||||
|
extract_rows_op = Operator("extract_rows", X='X', Out='Out')
|
||||||
|
extract_rows_op.run(scope, place)
|
||||||
|
|
||||||
|
# get result from Out
|
||||||
|
result_array = np.array(out_tensor)
|
||||||
|
result_array = [ele[0] for ele in result_array]
|
||||||
|
assert result_array == rows
|
||||||
|
|
||||||
|
def test_concat_rows(self):
|
||||||
|
places = [core.CPUPlace()]
|
||||||
|
if core.is_compiled_with_cuda():
|
||||||
|
places.append(core.CUDAPlace(0))
|
||||||
|
for place in places:
|
||||||
|
self.check_with_place(place)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue