|
|
|
@ -12,9 +12,34 @@ class BaseParallelForTest(unittest.TestCase):
|
|
|
|
|
fetch=fetch,
|
|
|
|
|
place=cpu,
|
|
|
|
|
use_parallel=False)
|
|
|
|
|
print result_cpu
|
|
|
|
|
result_cpu_parallel = self._main_impl_(
|
|
|
|
|
callback=callback,
|
|
|
|
|
feed=feed,
|
|
|
|
|
fetch=fetch,
|
|
|
|
|
place=cpu,
|
|
|
|
|
use_parallel=True)
|
|
|
|
|
if fluid.core.is_compile_gpu():
|
|
|
|
|
gpu = fluid.CUDAPlace(0)
|
|
|
|
|
result_gpu = self._main_impl_(
|
|
|
|
|
callback=callback,
|
|
|
|
|
feed=feed,
|
|
|
|
|
fetch=fetch,
|
|
|
|
|
place=gpu,
|
|
|
|
|
use_parallel=False)
|
|
|
|
|
result_gpu_parallel = self._main_impl_(
|
|
|
|
|
callback=callback,
|
|
|
|
|
feed=feed,
|
|
|
|
|
fetch=fetch,
|
|
|
|
|
place=gpu,
|
|
|
|
|
use_parallel=True)
|
|
|
|
|
self._assert_same_(fetch, result_cpu, result_cpu_parallel,
|
|
|
|
|
result_gpu, result_gpu_parallel)
|
|
|
|
|
else:
|
|
|
|
|
self._assert_same_(fetch, result_cpu, result_cpu_parallel)
|
|
|
|
|
|
|
|
|
|
def _main_impl_(self, callback, feed, fetch, place, use_parallel=False):
|
|
|
|
|
if isinstance(fetch, basestring):
|
|
|
|
|
fetch = [fetch]
|
|
|
|
|
main = fluid.Program()
|
|
|
|
|
startup = fluid.Program()
|
|
|
|
|
# Fix seed
|
|
|
|
@ -31,20 +56,19 @@ class BaseParallelForTest(unittest.TestCase):
|
|
|
|
|
|
|
|
|
|
if isinstance(data, fluid.Variable):
|
|
|
|
|
data = [data]
|
|
|
|
|
|
|
|
|
|
with pd.do():
|
|
|
|
|
ins = map(pd.read_input, data)
|
|
|
|
|
if len(ins) == 1:
|
|
|
|
|
ins = ins[0]
|
|
|
|
|
generator.send(ins) # patch input
|
|
|
|
|
loss = next(generator)
|
|
|
|
|
loss = generator.send(ins) # patch input
|
|
|
|
|
pd.write_output(loss)
|
|
|
|
|
|
|
|
|
|
loss = pd()
|
|
|
|
|
else:
|
|
|
|
|
data = next(generator)
|
|
|
|
|
generator.send(data)
|
|
|
|
|
loss = next(generator)
|
|
|
|
|
|
|
|
|
|
loss = generator.send(data)
|
|
|
|
|
self.assertIsNotNone(loss)
|
|
|
|
|
avg_loss = fluid.layers.mean(x=loss)
|
|
|
|
|
fluid.backward.append_backward(loss=avg_loss)
|
|
|
|
|
|
|
|
|
@ -52,11 +76,25 @@ class BaseParallelForTest(unittest.TestCase):
|
|
|
|
|
exe.run(startup)
|
|
|
|
|
return exe.run(main, feed=feed, fetch_list=fetch)
|
|
|
|
|
|
|
|
|
|
def _assert_same_(self, fetch, *args):
|
|
|
|
|
def _impl_(a, b, fetch_id, item_id):
|
|
|
|
|
item_str = ['CPU', 'ParallelCPU', 'GPU', 'ParallelGPU']
|
|
|
|
|
flag = numpy.allclose(a, b, rtol=0.1)
|
|
|
|
|
self.assertTrue(flag, "The {0} are different in {1}".format(
|
|
|
|
|
fetch[fetch_id], item_str[item_id]))
|
|
|
|
|
|
|
|
|
|
for i, items in enumerate(zip(*args)):
|
|
|
|
|
self.assertGreater(len(items), 0)
|
|
|
|
|
for j in range(1, len(items)):
|
|
|
|
|
_impl_(items[0], items[j], fetch_id=i, item_id=j)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ParallelOpTest(BaseParallelForTest):
|
|
|
|
|
def test_simple_fc(self):
|
|
|
|
|
def __network__():
|
|
|
|
|
x = fluid.layers.data(shape=[784], dtype='float32', name='img')
|
|
|
|
|
# FIXME: This is a bug of parallel.do
|
|
|
|
|
x.stop_gradient = False
|
|
|
|
|
x = yield x
|
|
|
|
|
hidden = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
|
|
|
|
|
loss = fluid.layers.mean(x=hidden)
|
|
|
|
|