Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into update_crop_op
commit
24649a780d
@ -0,0 +1,164 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
import paddle
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
import paddle.fluid.core as core
|
||||||
|
from paddle.dataset import mnist, cifar, flowers, image
|
||||||
|
|
||||||
|
|
||||||
|
def convert_2_recordio(py_reader, outfilepath, batch_size, shape_data,
|
||||||
|
shape_label):
|
||||||
|
num_batches = 0
|
||||||
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
||||||
|
reader = paddle.batch(py_reader(), batch_size=batch_size)
|
||||||
|
feeder = fluid.DataFeeder(
|
||||||
|
feed_list=[ # order is image and label
|
||||||
|
fluid.layers.data(
|
||||||
|
name='image', shape=shape_data),
|
||||||
|
fluid.layers.data(
|
||||||
|
name='label', shape=shape_label, dtype='int64'),
|
||||||
|
],
|
||||||
|
place=fluid.CPUPlace())
|
||||||
|
num_batches = fluid.recordio_writer.convert_reader_to_recordio_file(
|
||||||
|
outfilepath, reader, feeder)
|
||||||
|
return num_batches
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_mnist(outpath, batch_size):
|
||||||
|
outfilepath = os.path.join(outpath, "mnist.recordio")
|
||||||
|
convert_2_recordio(mnist.train, outfilepath, batch_size, [784], [1])
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_cifar10(outpath, batch_size):
|
||||||
|
outfilepath = os.path.join(outpath, "cifar.recordio")
|
||||||
|
convert_2_recordio(cifar.train10, outfilepath, batch_size, [3, 32, 32], [1])
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_flowers(outpath, batch_size):
|
||||||
|
outfilepath = os.path.join(outpath, "flowers.recordio")
|
||||||
|
convert_2_recordio(flowers.train, outfilepath, batch_size, [3, 224, 224],
|
||||||
|
[1])
|
||||||
|
|
||||||
|
|
||||||
|
def default_mapper(sample):
|
||||||
|
img, label = sample
|
||||||
|
img = image.simple_transform(
|
||||||
|
img, 256, 224, True, mean=[103.94, 116.78, 123.68])
|
||||||
|
return img.flatten().astype('float32'), label
|
||||||
|
|
||||||
|
|
||||||
|
def imagenet_train(data_dir):
|
||||||
|
contents = os.listdir(data_dir)
|
||||||
|
if set(contents) != set(
|
||||||
|
["train", "train.txt", "val", "val_set", "val.txt", "unzip.sh"]):
|
||||||
|
raise Exception("Imagenet data contents error!")
|
||||||
|
img2label = dict()
|
||||||
|
imgfilelist = []
|
||||||
|
with open(os.path.join(data_dir, "train.txt")) as fn:
|
||||||
|
while 1:
|
||||||
|
l = fn.readline()
|
||||||
|
if not l:
|
||||||
|
break
|
||||||
|
img, lbl = l[:-1].split(" ")
|
||||||
|
img2label[img] = int(lbl)
|
||||||
|
imgfilelist.append(img)
|
||||||
|
# shuffle all, this is slow
|
||||||
|
random.shuffle(imgfilelist)
|
||||||
|
|
||||||
|
def train_reader():
|
||||||
|
for idx, imgfile in enumerate(imgfilelist):
|
||||||
|
data = image.load_image(
|
||||||
|
os.path.join(data_dir, "train", imgfile.lower()))
|
||||||
|
label = [img2label[imgfile], ]
|
||||||
|
yield [data, label]
|
||||||
|
|
||||||
|
return paddle.reader.map_readers(default_mapper, train_reader)
|
||||||
|
|
||||||
|
|
||||||
|
def imagenet_test(data_dir):
|
||||||
|
contents = os.listdir(data_dir)
|
||||||
|
if set(contents) != set(
|
||||||
|
["train", "train.txt", "val", "val_set", "val.txt", "unzip.sh"]):
|
||||||
|
raise Exception("Imagenet data contents error!")
|
||||||
|
img2label = dict()
|
||||||
|
imgfilelist = []
|
||||||
|
with open(os.path.join(data_dir, "val.txt")) as fn:
|
||||||
|
while 1:
|
||||||
|
l = fn.readline()
|
||||||
|
if not l:
|
||||||
|
break
|
||||||
|
img, lbl = l[:-1].split(" ")
|
||||||
|
img2label[img] = int(lbl)
|
||||||
|
imgfilelist.append(img)
|
||||||
|
|
||||||
|
def test_reader():
|
||||||
|
for idx, imgfile in enumerate(imgfilelist):
|
||||||
|
base_path = os.path.join(data_dir, "val", imgfile.split(".")[0])
|
||||||
|
image_path = ".".join([base_path, "jpeg"])
|
||||||
|
data = image.load_image(image_path)
|
||||||
|
label = [img2label[imgfile], ]
|
||||||
|
yield [data, label]
|
||||||
|
|
||||||
|
return paddle.reader.map_readers(default_mapper, test_reader)
|
||||||
|
|
||||||
|
|
||||||
|
# FIXME(wuyi): delete this when https://github.com/PaddlePaddle/Paddle/pull/11066 is merged
|
||||||
|
def convert_reader_to_recordio_files(
|
||||||
|
filename,
|
||||||
|
batch_per_file,
|
||||||
|
reader_creator,
|
||||||
|
feeder,
|
||||||
|
compressor=core.RecordIOWriter.Compressor.Snappy,
|
||||||
|
max_num_records=1000,
|
||||||
|
feed_order=None):
|
||||||
|
if feed_order is None:
|
||||||
|
feed_order = feeder.feed_names
|
||||||
|
f_name, f_ext = os.path.splitext(filename)
|
||||||
|
assert (f_ext == ".recordio")
|
||||||
|
|
||||||
|
lines = []
|
||||||
|
f_idx = 0
|
||||||
|
counter = 0
|
||||||
|
for idx, batch in enumerate(reader_creator()):
|
||||||
|
lines.append(batch)
|
||||||
|
if idx >= batch_per_file and idx % batch_per_file == 0:
|
||||||
|
filename = "%s-%05d%s" % (f_name, f_idx, f_ext)
|
||||||
|
with fluid.recordio_writer.create_recordio_writer(
|
||||||
|
filename, compressor, max_num_records) as writer:
|
||||||
|
for l in lines:
|
||||||
|
res = feeder.feed(l)
|
||||||
|
for each in feed_order:
|
||||||
|
writer.append_tensor(res[each])
|
||||||
|
writer.complete_append_tensor()
|
||||||
|
counter += 1
|
||||||
|
lines = []
|
||||||
|
f_idx += 1
|
||||||
|
print("written file: ", filename)
|
||||||
|
return counter
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_imagenet(inpath, outpath, batch_size):
|
||||||
|
r = paddle.batch(imagenet_train(inpath), batch_size=batch_size)
|
||||||
|
feeder = fluid.DataFeeder(
|
||||||
|
feed_list=[
|
||||||
|
fluid.layers.data(
|
||||||
|
name="image", shape=[3, 224, 224]), fluid.layers.data(
|
||||||
|
name="label", shape=[1], dtype='int64')
|
||||||
|
],
|
||||||
|
place=fluid.CPUPlace())
|
||||||
|
outpath = os.path.join(outpath, "imagenet.recordio")
|
||||||
|
convert_reader_to_recordio_files(outpath, 10000, r, feeder)
|
@ -0,0 +1,34 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/reduce_min_max_op.h"
|
||||||
|
|
||||||
|
REGISTER_REDUCE_OP(reduce_max);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
reduce_max, ops::ReduceKernel<paddle::platform::CPUDeviceContext, float,
|
||||||
|
ops::MaxFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext, double,
|
||||||
|
ops::MaxFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext, int, ops::MaxFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext, int64_t,
|
||||||
|
ops::MaxFunctor>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
reduce_max_grad, ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
float, ops::MaxOrMinGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, double,
|
||||||
|
ops::MaxOrMinGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, int,
|
||||||
|
ops::MaxOrMinGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, int64_t,
|
||||||
|
ops::MaxOrMinGradFunctor>);
|
@ -0,0 +1,34 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/reduce_min_max_op.h"
|
||||||
|
|
||||||
|
REGISTER_OP_CUDA_KERNEL(reduce_max,
|
||||||
|
ops::ReduceKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
float, ops::MaxFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
double, ops::MaxFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
int, ops::MaxFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
int64_t, ops::MaxFunctor>);
|
||||||
|
REGISTER_OP_CUDA_KERNEL(
|
||||||
|
reduce_max_grad, ops::ReduceGradKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
float, ops::MaxOrMinGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CUDADeviceContext, double,
|
||||||
|
ops::MaxOrMinGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CUDADeviceContext, int,
|
||||||
|
ops::MaxOrMinGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CUDADeviceContext, int64_t,
|
||||||
|
ops::MaxOrMinGradFunctor>);
|
@ -0,0 +1,35 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/reduce_mean_op.h"
|
||||||
|
|
||||||
|
REGISTER_REDUCE_OP(reduce_mean);
|
||||||
|
REGISTER_OP_CPU_KERNEL(reduce_mean,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
float, ops::MeanFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
double, ops::MeanFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
int, ops::MeanFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
int64_t, ops::MeanFunctor>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(reduce_mean_grad,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
float, ops::MeanGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
double, ops::MeanGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
int, ops::MeanGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
int64_t, ops::MeanGradFunctor>);
|
@ -0,0 +1,34 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/reduce_mean_op.h"
|
||||||
|
|
||||||
|
REGISTER_OP_CUDA_KERNEL(reduce_mean,
|
||||||
|
ops::ReduceKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
float, ops::MeanFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
double, ops::MeanFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
int, ops::MeanFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
int64_t, ops::MeanFunctor>);
|
||||||
|
REGISTER_OP_CUDA_KERNEL(
|
||||||
|
reduce_mean_grad, ops::ReduceGradKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
float, ops::MeanGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CUDADeviceContext, double,
|
||||||
|
ops::MeanGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CUDADeviceContext, int,
|
||||||
|
ops::MeanGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CUDADeviceContext, int64_t,
|
||||||
|
ops::MeanGradFunctor>);
|
@ -0,0 +1,39 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/reduce_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
struct MeanFunctor {
|
||||||
|
template <typename DeviceContext, typename X, typename Y, typename Dim>
|
||||||
|
void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
|
||||||
|
y->device(place) = x->mean(dim);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
struct MeanGradFunctor {
|
||||||
|
template <typename DeviceContext, typename X, typename Y, typename DX,
|
||||||
|
typename DY, typename Dim>
|
||||||
|
void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy,
|
||||||
|
const Dim& dim, int size) {
|
||||||
|
dx->device(place) = dy->broadcast(dim) / dx->constant(size);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,50 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/reduce_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
struct MaxFunctor {
|
||||||
|
template <typename DeviceContext, typename X, typename Y, typename Dim>
|
||||||
|
void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
|
||||||
|
y->device(place) = x->maximum(dim);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
struct MinFunctor {
|
||||||
|
template <typename DeviceContext, typename X, typename Y, typename Dim>
|
||||||
|
void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
|
||||||
|
y->device(place) = x->minimum(dim);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
struct MaxOrMinGradFunctor {
|
||||||
|
template <typename DeviceContext, typename X, typename Y, typename DX,
|
||||||
|
typename DY, typename Dim>
|
||||||
|
void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy,
|
||||||
|
const Dim& dim, int size) {
|
||||||
|
auto equals = (*x) == y->broadcast(dim);
|
||||||
|
auto ones = dx->constant(1);
|
||||||
|
auto zeros = dx->constant(0);
|
||||||
|
// If there are multiple minimum or maximum elements, the subgradient of
|
||||||
|
// each is the set [0, 1], and we pass gradient to all of them here.
|
||||||
|
dx->device(place) = dy->broadcast(dim) * equals.select(ones, zeros);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,34 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/reduce_min_max_op.h"
|
||||||
|
|
||||||
|
REGISTER_REDUCE_OP(reduce_min);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
reduce_min, ops::ReduceKernel<paddle::platform::CPUDeviceContext, float,
|
||||||
|
ops::MinFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext, double,
|
||||||
|
ops::MinFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext, int, ops::MinFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext, int64_t,
|
||||||
|
ops::MinFunctor>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
reduce_min_grad, ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
float, ops::MaxOrMinGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, double,
|
||||||
|
ops::MaxOrMinGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, int,
|
||||||
|
ops::MaxOrMinGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, int64_t,
|
||||||
|
ops::MaxOrMinGradFunctor>);
|
@ -0,0 +1,34 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/reduce_min_max_op.h"
|
||||||
|
|
||||||
|
REGISTER_OP_CUDA_KERNEL(reduce_min,
|
||||||
|
ops::ReduceKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
float, ops::MinFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
double, ops::MinFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
int, ops::MinFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
int64_t, ops::MinFunctor>);
|
||||||
|
REGISTER_OP_CUDA_KERNEL(
|
||||||
|
reduce_min_grad, ops::ReduceGradKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
float, ops::MaxOrMinGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CUDADeviceContext, double,
|
||||||
|
ops::MaxOrMinGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CUDADeviceContext, int,
|
||||||
|
ops::MaxOrMinGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CUDADeviceContext, int64_t,
|
||||||
|
ops::MaxOrMinGradFunctor>);
|
@ -1,186 +0,0 @@
|
|||||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
you may not use this file except in compliance with the License.
|
|
||||||
You may obtain a copy of the License at
|
|
||||||
|
|
||||||
http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
|
|
||||||
Unless required by applicable law or agreed to in writing, software
|
|
||||||
distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
See the License for the specific language governing permissions and
|
|
||||||
limitations under the License. */
|
|
||||||
|
|
||||||
#include "paddle/fluid/operators/reduce_op.h"
|
|
||||||
|
|
||||||
#include <algorithm>
|
|
||||||
#include <string>
|
|
||||||
#include <vector>
|
|
||||||
|
|
||||||
namespace paddle {
|
|
||||||
namespace operators {
|
|
||||||
|
|
||||||
using framework::Tensor;
|
|
||||||
|
|
||||||
class ReduceOp : public framework::OperatorWithKernel {
|
|
||||||
public:
|
|
||||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
||||||
|
|
||||||
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
||||||
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
||||||
"Input(X) of ReduceOp should not be null.");
|
|
||||||
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
||||||
"Output(Out) of ReduceOp should not be null.");
|
|
||||||
auto x_dims = ctx->GetInputDim("X");
|
|
||||||
auto x_rank = x_dims.size();
|
|
||||||
PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported.");
|
|
||||||
auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
|
|
||||||
for (size_t i = 0; i < dims.size(); ++i) {
|
|
||||||
if (dims[i] < 0) dims[i] = x_rank + dims[i];
|
|
||||||
PADDLE_ENFORCE_LT(
|
|
||||||
dims[i], x_rank,
|
|
||||||
"The dim should be in the range [-rank(input), rank(input)).");
|
|
||||||
}
|
|
||||||
sort(dims.begin(), dims.end());
|
|
||||||
bool reduce_all = ctx->Attrs().Get<bool>("reduce_all");
|
|
||||||
bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
|
|
||||||
if (reduce_all) {
|
|
||||||
if (keep_dim)
|
|
||||||
ctx->SetOutputDim(
|
|
||||||
"Out", framework::make_ddim(std::vector<int64_t>(x_rank, 1)));
|
|
||||||
else
|
|
||||||
ctx->SetOutputDim("Out", {1});
|
|
||||||
} else {
|
|
||||||
auto dims_vector = vectorize(x_dims);
|
|
||||||
if (keep_dim) {
|
|
||||||
for (size_t i = 0; i < dims.size(); ++i) {
|
|
||||||
dims_vector[dims[i]] = 1;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
const int kDelFlag = -2;
|
|
||||||
for (size_t i = 0; i < dims.size(); ++i) {
|
|
||||||
dims_vector[dims[i]] = kDelFlag;
|
|
||||||
}
|
|
||||||
dims_vector.erase(
|
|
||||||
remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
|
|
||||||
dims_vector.end());
|
|
||||||
}
|
|
||||||
auto out_dims = framework::make_ddim(dims_vector);
|
|
||||||
ctx->SetOutputDim("Out", out_dims);
|
|
||||||
if (dims[0] != 0) {
|
|
||||||
// Only pass LoD when not reducing on the first dim.
|
|
||||||
ctx->ShareLoD("X", /*->*/ "Out");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
class ReduceGradOp : public framework::OperatorWithKernel {
|
|
||||||
public:
|
|
||||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
||||||
|
|
||||||
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
||||||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
|
|
||||||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
||||||
"Input(Out@GRAD) should not be null.");
|
|
||||||
auto x_dims = ctx->GetInputDim("X");
|
|
||||||
auto x_rank = x_dims.size();
|
|
||||||
PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported.");
|
|
||||||
auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
|
|
||||||
for (size_t i = 0; i < dims.size(); ++i) {
|
|
||||||
if (dims[i] < 0) dims[i] = x_rank + dims[i];
|
|
||||||
PADDLE_ENFORCE_LT(
|
|
||||||
dims[i], x_rank,
|
|
||||||
"The dim should be in the range [-rank(input), rank(input)).");
|
|
||||||
}
|
|
||||||
sort(dims.begin(), dims.end());
|
|
||||||
auto x_grad_name = framework::GradVarName("X");
|
|
||||||
if (ctx->HasOutput(x_grad_name)) {
|
|
||||||
ctx->SetOutputDim(x_grad_name, x_dims);
|
|
||||||
ctx->ShareLoD("X", /*->*/ x_grad_name);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
||||||
public:
|
|
||||||
void Make() final {
|
|
||||||
AddInput("X",
|
|
||||||
"(Tensor) The input tensor. Tensors with rank at most 6 are "
|
|
||||||
"supported.");
|
|
||||||
AddOutput("Out", "(Tensor) The result tensor.");
|
|
||||||
AddAttr<std::vector<int>>(
|
|
||||||
"dim",
|
|
||||||
"(list<int>, default {0}) The dimensions to reduce. "
|
|
||||||
"Must be in the range [-rank(input), rank(input)). "
|
|
||||||
"If `dim[i] < 0`, the dims[i] to reduce is `rank + dims[i]`. "
|
|
||||||
"Note that reducing on the first dim will make the LoD info lost.")
|
|
||||||
.SetDefault({0});
|
|
||||||
AddAttr<bool>("keep_dim",
|
|
||||||
"(bool, default false) "
|
|
||||||
"If true, retain the reduced dimension with length 1.")
|
|
||||||
.SetDefault(false);
|
|
||||||
AddAttr<bool>("reduce_all",
|
|
||||||
"(bool, default false) "
|
|
||||||
"If true, output a scalar reduced along all dimensions.")
|
|
||||||
.SetDefault(false);
|
|
||||||
AddComment(string::Sprintf(R"DOC(
|
|
||||||
%s Operator.
|
|
||||||
|
|
||||||
This operator computes the %s of input tensor along the given dimension.
|
|
||||||
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
|
|
||||||
If reduce_all is true, just reduce along all dimensions and output a scalar.
|
|
||||||
|
|
||||||
)DOC",
|
|
||||||
GetOpType(), GetName()));
|
|
||||||
}
|
|
||||||
|
|
||||||
protected:
|
|
||||||
virtual std::string GetName() const = 0;
|
|
||||||
virtual std::string GetOpType() const = 0;
|
|
||||||
};
|
|
||||||
|
|
||||||
} // namespace operators
|
|
||||||
} // namespace paddle
|
|
||||||
|
|
||||||
namespace ops = paddle::operators;
|
|
||||||
|
|
||||||
#define REGISTER_REDUCE_OP(op_name) \
|
|
||||||
class __##op_name##Maker__ : public ops::ReduceOpMaker { \
|
|
||||||
protected: \
|
|
||||||
virtual std::string GetName() const { return #op_name; } \
|
|
||||||
virtual std::string GetOpType() const { return "Reduce " #op_name; } \
|
|
||||||
}; \
|
|
||||||
REGISTER_OPERATOR(reduce_##op_name, ops::ReduceOp, __##op_name##Maker__, \
|
|
||||||
paddle::framework::DefaultGradOpDescMaker<true>); \
|
|
||||||
REGISTER_OPERATOR(reduce_##op_name##_grad, ops::ReduceGradOp)
|
|
||||||
|
|
||||||
REGISTER_REDUCE_OP(sum);
|
|
||||||
REGISTER_REDUCE_OP(mean);
|
|
||||||
REGISTER_REDUCE_OP(max);
|
|
||||||
REGISTER_REDUCE_OP(min);
|
|
||||||
REGISTER_REDUCE_OP(prod);
|
|
||||||
|
|
||||||
#define REGISTER_REDUCE_CPU_KERNEL(reduce_type, functor, grad_functor) \
|
|
||||||
REGISTER_OP_CPU_KERNEL(reduce_type, \
|
|
||||||
ops::ReduceKernel<paddle::platform::CPUDeviceContext, \
|
|
||||||
float, ops::functor>, \
|
|
||||||
ops::ReduceKernel<paddle::platform::CPUDeviceContext, \
|
|
||||||
double, ops::functor>, \
|
|
||||||
ops::ReduceKernel<paddle::platform::CPUDeviceContext, \
|
|
||||||
int, ops::functor>, \
|
|
||||||
ops::ReduceKernel<paddle::platform::CPUDeviceContext, \
|
|
||||||
int64_t, ops::functor>); \
|
|
||||||
REGISTER_OP_CPU_KERNEL( \
|
|
||||||
reduce_type##_grad, \
|
|
||||||
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, float, \
|
|
||||||
ops::grad_functor>, \
|
|
||||||
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, double, \
|
|
||||||
ops::grad_functor>, \
|
|
||||||
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, int, \
|
|
||||||
ops::grad_functor>, \
|
|
||||||
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, int64_t, \
|
|
||||||
ops::grad_functor>);
|
|
||||||
|
|
||||||
FOR_EACH_KERNEL_FUNCTOR(REGISTER_REDUCE_CPU_KERNEL);
|
|
@ -1,41 +0,0 @@
|
|||||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
you may not use this file except in compliance with the License.
|
|
||||||
You may obtain a copy of the License at
|
|
||||||
|
|
||||||
http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
|
|
||||||
Unless required by applicable law or agreed to in writing, software
|
|
||||||
distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
See the License for the specific language governing permissions and
|
|
||||||
limitations under the License. */
|
|
||||||
|
|
||||||
#define EIGEN_USE_GPU
|
|
||||||
#include "paddle/fluid/operators/reduce_op.h"
|
|
||||||
|
|
||||||
namespace ops = paddle::operators;
|
|
||||||
|
|
||||||
#define REGISTER_REDUCE_GPU_KERNEL(reduce_type, functor, grad_functor) \
|
|
||||||
REGISTER_OP_CUDA_KERNEL( \
|
|
||||||
reduce_type, ops::ReduceKernel<paddle::platform::CUDADeviceContext, \
|
|
||||||
float, ops::functor>, \
|
|
||||||
ops::ReduceKernel<paddle::platform::CUDADeviceContext, double, \
|
|
||||||
ops::functor>, \
|
|
||||||
ops::ReduceKernel<paddle::platform::CUDADeviceContext, int, \
|
|
||||||
ops::functor>, \
|
|
||||||
ops::ReduceKernel<paddle::platform::CUDADeviceContext, int64_t, \
|
|
||||||
ops::functor>); \
|
|
||||||
REGISTER_OP_CUDA_KERNEL( \
|
|
||||||
reduce_type##_grad, \
|
|
||||||
ops::ReduceGradKernel<paddle::platform::CUDADeviceContext, float, \
|
|
||||||
ops::grad_functor>, \
|
|
||||||
ops::ReduceGradKernel<paddle::platform::CUDADeviceContext, double, \
|
|
||||||
ops::grad_functor>, \
|
|
||||||
ops::ReduceGradKernel<paddle::platform::CUDADeviceContext, int, \
|
|
||||||
ops::grad_functor>, \
|
|
||||||
ops::ReduceGradKernel<paddle::platform::CUDADeviceContext, int64_t, \
|
|
||||||
ops::grad_functor>);
|
|
||||||
|
|
||||||
FOR_EACH_KERNEL_FUNCTOR(REGISTER_REDUCE_GPU_KERNEL);
|
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,109 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include <vector>
|
||||||
|
#include "paddle/fluid/framework/eigen.h"
|
||||||
|
#include "paddle/fluid/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
using DDim = framework::DDim;
|
||||||
|
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
|
||||||
|
typename IndexType = Eigen::DenseIndex>
|
||||||
|
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
|
||||||
|
template <typename T, int MajorType = Eigen::RowMajor,
|
||||||
|
typename IndexType = Eigen::DenseIndex>
|
||||||
|
using EigenScalar = framework::EigenScalar<T, MajorType, IndexType>;
|
||||||
|
template <typename T, int MajorType = Eigen::RowMajor,
|
||||||
|
typename IndexType = Eigen::DenseIndex>
|
||||||
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T, size_t D, size_t R_D,
|
||||||
|
typename Functor>
|
||||||
|
void ReduceFunctor(const DeviceContext& context, const framework::Tensor& input,
|
||||||
|
framework::Tensor* output, const std::vector<int>& dims,
|
||||||
|
bool keep_dim) {
|
||||||
|
auto x = EigenTensor<T, D>::From(input);
|
||||||
|
auto x_rank = static_cast<int>(x.dimensions().size());
|
||||||
|
auto reduce_dim = Eigen::array<int, R_D>();
|
||||||
|
std::vector<int> dims_ref = dims;
|
||||||
|
for (size_t i = 0; i < dims_ref.size(); ++i) {
|
||||||
|
if (dims_ref[i] < 0) dims_ref[i] = x_rank + dims_ref[i];
|
||||||
|
reduce_dim[i] = dims_ref[i];
|
||||||
|
}
|
||||||
|
// construct the squeezed output tensor
|
||||||
|
DDim out_dims = output->dims();
|
||||||
|
if (keep_dim && x_rank > 1) {
|
||||||
|
const int kDelFlag = -2;
|
||||||
|
auto dims_vector = framework::vectorize(out_dims);
|
||||||
|
for (size_t i = 0; i < dims_ref.size(); ++i) {
|
||||||
|
dims_vector[dims_ref[i]] = kDelFlag;
|
||||||
|
}
|
||||||
|
dims_vector.erase(remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
|
||||||
|
dims_vector.end());
|
||||||
|
out_dims = framework::make_ddim(dims_vector);
|
||||||
|
}
|
||||||
|
auto& place = *context.eigen_device();
|
||||||
|
Functor functor;
|
||||||
|
|
||||||
|
if (D == 1) {
|
||||||
|
auto out = EigenScalar<T>::From(*output);
|
||||||
|
functor(place, &x, &out, reduce_dim);
|
||||||
|
} else {
|
||||||
|
auto out = EigenTensor<T, (D - R_D)>::From(*output, out_dims);
|
||||||
|
functor(place, &x, &out, reduce_dim);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T, size_t D, typename Functor>
|
||||||
|
void ReduceGradFunctor(const DeviceContext& context,
|
||||||
|
const framework::Tensor& input0,
|
||||||
|
const framework::Tensor& input1,
|
||||||
|
const framework::Tensor& input2,
|
||||||
|
framework::Tensor* output,
|
||||||
|
const std::vector<int>& dims) {
|
||||||
|
auto x = EigenTensor<T, D>::From(input0);
|
||||||
|
auto x_grad = EigenTensor<T, D>::From(*output);
|
||||||
|
auto x_rank = static_cast<int>(x.dimensions().size());
|
||||||
|
auto x_dims = input0.dims();
|
||||||
|
auto reduced_dims_v = framework::vectorize(x_dims);
|
||||||
|
std::vector<int> dims_ref = dims;
|
||||||
|
Eigen::array<int, D> broadcast_dim;
|
||||||
|
for (size_t i = 0; i < D; ++i) broadcast_dim[i] = 1;
|
||||||
|
|
||||||
|
int broad_cats_times = 1;
|
||||||
|
for (size_t i = 0; i < dims_ref.size(); ++i) {
|
||||||
|
if (dims_ref[i] < 0) {
|
||||||
|
dims_ref[i] = x_rank + dims_ref[i];
|
||||||
|
}
|
||||||
|
reduced_dims_v[dims_ref[i]] = 1;
|
||||||
|
broadcast_dim[dims_ref[i]] = x_dims[dims_ref[i]];
|
||||||
|
broad_cats_times *= x_dims[dims_ref[i]];
|
||||||
|
}
|
||||||
|
auto reduced_dims = framework::make_ddim(reduced_dims_v);
|
||||||
|
auto x_reduce = EigenTensor<T, D>::From(input1, reduced_dims);
|
||||||
|
auto x_reduce_grad = EigenTensor<T, D>::From(input2, reduced_dims);
|
||||||
|
|
||||||
|
auto& place = *context.eigen_device();
|
||||||
|
|
||||||
|
Functor functor;
|
||||||
|
functor(place, &x, &x_reduce, &x_grad, &x_reduce_grad, broadcast_dim,
|
||||||
|
broad_cats_times);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,35 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/reduce_prod_op.h"
|
||||||
|
|
||||||
|
REGISTER_REDUCE_OP(reduce_prod);
|
||||||
|
REGISTER_OP_CPU_KERNEL(reduce_prod,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
float, ops::ProdFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
double, ops::ProdFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
int, ops::ProdFunctor>,
|
||||||
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
int64_t, ops::ProdFunctor>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(reduce_prod_grad,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
float, ops::ProdGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
double, ops::ProdGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
int, ops::ProdGradFunctor>,
|
||||||
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
|
||||||
|
int64_t, ops::ProdGradFunctor>);
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue