Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into v2-network
commit
281250f56f
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,240 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "CosSimOp.h"
|
||||||
|
#include "paddle/math/Matrix.h"
|
||||||
|
#include "paddle/math/Vector.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
/**
|
||||||
|
* Cosine Similarity for CpuMatrix
|
||||||
|
*
|
||||||
|
* \param out_mat, output value, size: nSamples * 1.
|
||||||
|
* \param in1_mat, input value 1, size: nSamples * dim.
|
||||||
|
* \param in2_mat, input value 2, size: n2 * dim (n2 == 1 or n2 == nSamples).
|
||||||
|
* \param scale, default 1.0
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
template <>
|
||||||
|
void CosSimForward<DEVICE_TYPE_CPU>(CpuMatrix& out_mat,
|
||||||
|
const CpuMatrix& in1_mat,
|
||||||
|
const CpuMatrix& in2_mat,
|
||||||
|
real scale) {
|
||||||
|
CHECK(out_mat.getData() && in1_mat.getData() && in2_mat.getData());
|
||||||
|
size_t num_samples = out_mat.getHeight();
|
||||||
|
size_t dim = in1_mat.getWidth();
|
||||||
|
/// column vector [nSamples, 1]
|
||||||
|
real* out = out_mat.getData();
|
||||||
|
const real* x = in1_mat.getData();
|
||||||
|
const real* y = in2_mat.getData();
|
||||||
|
|
||||||
|
/// in2 might only have one row or full rows
|
||||||
|
CHECK(in2_mat.getHeight() == 1LU || in2_mat.getHeight() == num_samples);
|
||||||
|
size_t inc = (in2_mat.getHeight() == 1LU) ? 0 : dim;
|
||||||
|
for (size_t i = 0; i < num_samples; ++i, x += dim, y += inc) {
|
||||||
|
real square_sum_x = 0;
|
||||||
|
real square_sum_y = 0;
|
||||||
|
real xy = 0;
|
||||||
|
for (size_t j = 0; j < dim; ++j) {
|
||||||
|
square_sum_x += x[j] * x[j];
|
||||||
|
square_sum_y += y[j] * y[j];
|
||||||
|
xy += x[j] * y[j];
|
||||||
|
}
|
||||||
|
CHECK(square_sum_x > 0 && square_sum_y > 0);
|
||||||
|
out[i] = scale * xy / (std::sqrt(square_sum_x) * std::sqrt(square_sum_y));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Cosine Similarity
|
||||||
|
* for each row i,
|
||||||
|
* out[i] = scale * cos(input1[i], input2[i])
|
||||||
|
* = scale * <input1[i], input2[i]>/sqrt(|input1[i]|^2 * |input2[i]|^2)
|
||||||
|
* when input2 only has one row, then for each row i,
|
||||||
|
* out[i] = cos(input1[i], input2[0])
|
||||||
|
*
|
||||||
|
* \param inputs[0] input matrix 1, size: nSamples * dim.
|
||||||
|
* \param inputs[1] input matrix 2, size: n2 * dim (n2 == 1 or n2 == nSamples).
|
||||||
|
* \param outputs[0] output matrix, size : nSamples * 1.
|
||||||
|
*/
|
||||||
|
|
||||||
|
template <DeviceType Device>
|
||||||
|
class CosSimForwardFunc : public FunctionBase {
|
||||||
|
void init(const FuncConfig& config) override {
|
||||||
|
scale_ = config.get<real>("scale");
|
||||||
|
}
|
||||||
|
|
||||||
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
||||||
|
CHECK_EQ(inputs.size(), 2UL);
|
||||||
|
CHECK_EQ(outputs.size(), 1UL);
|
||||||
|
|
||||||
|
CHECK_EQ(inputs[0].shape().ndims(), 2UL);
|
||||||
|
CHECK_EQ(inputs[1].shape().ndims(), 2UL);
|
||||||
|
CHECK_EQ(outputs[0].shape().ndims(), 2UL);
|
||||||
|
|
||||||
|
CHECK_EQ(inputs[0].shape()[0], outputs[0].shape()[0]);
|
||||||
|
CHECK_EQ(inputs[0].shape()[1], inputs[1].shape()[1]);
|
||||||
|
CHECK_EQ(outputs[0].shape()[1], 1UL);
|
||||||
|
|
||||||
|
CHECK(outputs[0].data() && inputs[0].data() && inputs[1].data());
|
||||||
|
|
||||||
|
CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
|
||||||
|
auto out_mat = outputs[0].matrix<Device>();
|
||||||
|
const auto in1_mat = inputs[0].matrix<Device>();
|
||||||
|
const auto in2_mat = inputs[1].matrix<Device>();
|
||||||
|
|
||||||
|
CosSimForward<Device>(out_mat, in1_mat, in2_mat, scale_);
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
real scale_;
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Cosine Similarity Derivative for CpuMatrix
|
||||||
|
*
|
||||||
|
* \param in1_grad forward input grad 1, size: nSamples * dim.
|
||||||
|
* \param in2_grad forward input grad 2,
|
||||||
|
* size: n2 * dim (n2 == 1 or n2 == nSamples).
|
||||||
|
*
|
||||||
|
* \param out_grad backward loss output grad, size : nSamples * 1.
|
||||||
|
* \param out_val forward output value, size: nSamples * 1.
|
||||||
|
* \param in1_val forward input value 1, size: nSamples * dim.
|
||||||
|
* \param in2_val forward input value 2,
|
||||||
|
* size: n2 * dim (n2 == 1 or n2 == nSamples).
|
||||||
|
* \param scale, default 1.0
|
||||||
|
*/
|
||||||
|
template <>
|
||||||
|
void CosSimBackward<DEVICE_TYPE_CPU>(const CpuMatrix& out_grad,
|
||||||
|
const CpuMatrix& out_val,
|
||||||
|
const CpuMatrix& in1_val,
|
||||||
|
const CpuMatrix& in2_val,
|
||||||
|
CpuMatrix& in1_grad,
|
||||||
|
CpuMatrix& in2_grad,
|
||||||
|
real scale) {
|
||||||
|
CHECK(out_grad.getData() && out_val.getData() && in1_val.getData() &&
|
||||||
|
in2_val.getData() && in1_grad.getData() && in2_grad.getData());
|
||||||
|
CHECK_EQ(out_val.useGpu_, false) << "Matrix type are GPU, CPU required";
|
||||||
|
|
||||||
|
const real* grad = out_grad.getData();
|
||||||
|
const real* out = out_val.getData();
|
||||||
|
const real* prev_out_x = in1_val.getData();
|
||||||
|
const real* prev_out_y = in2_val.getData();
|
||||||
|
real* prev_grad_x = in1_grad.getData();
|
||||||
|
real* prev_grad_y = in2_grad.getData();
|
||||||
|
|
||||||
|
size_t num_samples = out_grad.getHeight();
|
||||||
|
size_t dim = in1_val.getWidth();
|
||||||
|
CHECK_EQ(in2_val.getHeight(), in2_grad.getHeight());
|
||||||
|
CHECK(in2_val.getHeight() == 1LU || in2_val.getHeight() == num_samples);
|
||||||
|
size_t inc = (in2_val.getHeight() == 1LU) ? 0 : dim;
|
||||||
|
for (size_t i = 0; i < num_samples; ++i,
|
||||||
|
prev_out_x += dim,
|
||||||
|
prev_out_y += inc,
|
||||||
|
prev_grad_x += dim,
|
||||||
|
prev_grad_y += inc) {
|
||||||
|
real square_sum_x = 0;
|
||||||
|
real square_sum_y = 0;
|
||||||
|
real xy = 0;
|
||||||
|
for (size_t j = 0; j < dim; ++j) {
|
||||||
|
square_sum_x += prev_out_x[j] * prev_out_x[j];
|
||||||
|
square_sum_y += prev_out_y[j] * prev_out_y[j];
|
||||||
|
xy += prev_out_x[j] * prev_out_y[j];
|
||||||
|
}
|
||||||
|
CHECK(square_sum_x > 0 && square_sum_y > 0);
|
||||||
|
if (xy == 0) {
|
||||||
|
real reciprocal =
|
||||||
|
1.0f / (std::sqrt(square_sum_x) * std::sqrt(square_sum_y));
|
||||||
|
for (size_t j = 0; j < dim; ++j) {
|
||||||
|
prev_grad_x[j] += scale * grad[i] * prev_out_y[j] * reciprocal;
|
||||||
|
prev_grad_y[j] += scale * grad[i] * prev_out_x[j] * reciprocal;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
real reciprocal_xy = 1.0f / xy;
|
||||||
|
real reciprocal_square_sum_x = 1.0f / square_sum_x;
|
||||||
|
real reciprocal_square_sum_y = 1.0f / square_sum_y;
|
||||||
|
for (size_t j = 0; j < dim; ++j) {
|
||||||
|
prev_grad_x[j] +=
|
||||||
|
out[i] * grad[i] * (prev_out_y[j] * reciprocal_xy -
|
||||||
|
prev_out_x[j] * reciprocal_square_sum_x);
|
||||||
|
prev_grad_y[j] +=
|
||||||
|
out[i] * grad[i] * (prev_out_x[j] * reciprocal_xy -
|
||||||
|
prev_out_y[j] * reciprocal_square_sum_y);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Cosine Similarity backward Derivative
|
||||||
|
*
|
||||||
|
* \param outputs[0] forward input grad 1, size: nSamples * dim.
|
||||||
|
* \param outputs[1] forward input grad 2,
|
||||||
|
* size: n2 * dim (n2 == 1 or n2 == nSamples).
|
||||||
|
*
|
||||||
|
* \param inputs[0] backward loss output grad, size : nSamples * 1.
|
||||||
|
* \param inputs[1] forward output value, size: nSamples * 1.
|
||||||
|
* \param inputs[2] forward input value 1, size: nSamples * dim.
|
||||||
|
* \param inputs[3] forward input value 2,
|
||||||
|
* size: n2 * dim (n2 == 1 or n2 == nSamples).
|
||||||
|
*/
|
||||||
|
template <DeviceType Device>
|
||||||
|
class CosSimBackwardFunc : public FunctionBase {
|
||||||
|
void init(const FuncConfig& config) override {
|
||||||
|
scale_ = config.get<real>("scale");
|
||||||
|
}
|
||||||
|
|
||||||
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
||||||
|
CHECK_EQ(inputs.size(), 4UL);
|
||||||
|
CHECK_EQ(outputs.size(), 2UL);
|
||||||
|
/// dim of out_grad and out_val == 1, column vector
|
||||||
|
CHECK_EQ(inputs[0].shape()[1], 1UL);
|
||||||
|
CHECK_EQ(inputs[1].shape()[1], 1UL);
|
||||||
|
/// nSamples of out_grad == out_val == in_val1 == in_grad1
|
||||||
|
CHECK_EQ(inputs[1].shape()[0], inputs[0].shape()[0]);
|
||||||
|
CHECK_EQ(inputs[0].shape()[0], inputs[0].shape()[0]);
|
||||||
|
CHECK_EQ(outputs[0].shape()[0], inputs[0].shape()[0]);
|
||||||
|
/// dim of in1_val1 == in_val2 == in_grad1 == in_grad2
|
||||||
|
CHECK_EQ(inputs[3].shape()[1], inputs[2].shape()[1]);
|
||||||
|
CHECK_EQ(outputs[0].shape()[1], inputs[2].shape()[1]);
|
||||||
|
CHECK_EQ(outputs[1].shape()[1], inputs[2].shape()[1]);
|
||||||
|
|
||||||
|
CHECK(inputs[0].data() && inputs[1].data() && inputs[2].data() &&
|
||||||
|
inputs[3].data() && outputs[0].data() && outputs[1].data());
|
||||||
|
|
||||||
|
CHECK_EQ(outputs[0].getArgType(), ADD_TO);
|
||||||
|
CHECK_EQ(outputs[1].getArgType(), ADD_TO);
|
||||||
|
|
||||||
|
const auto out_grad = inputs[0].matrix<Device>();
|
||||||
|
const auto out_val = inputs[1].matrix<Device>();
|
||||||
|
const auto in1_val = inputs[2].matrix<Device>();
|
||||||
|
const auto in2_val = inputs[3].matrix<Device>();
|
||||||
|
auto in1_grad = outputs[0].matrix<Device>();
|
||||||
|
auto in2_grad = outputs[1].matrix<Device>();
|
||||||
|
|
||||||
|
CosSimBackward<Device>(
|
||||||
|
out_grad, out_val, in1_val, in2_val, in1_grad, in2_grad, scale_);
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
real scale_;
|
||||||
|
};
|
||||||
|
|
||||||
|
REGISTER_TYPED_FUNC(CosSimForward, CPU, CosSimForwardFunc);
|
||||||
|
REGISTER_TYPED_FUNC(CosSimBackward, CPU, CosSimBackwardFunc);
|
||||||
|
#ifndef PADDLE_ONLY_CPU
|
||||||
|
REGISTER_TYPED_FUNC(CosSimForward, GPU, CosSimForwardFunc);
|
||||||
|
REGISTER_TYPED_FUNC(CosSimBackward, GPU, CosSimBackwardFunc);
|
||||||
|
#endif
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,61 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "Function.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Cosine Similarity Forward.
|
||||||
|
* for each row i,
|
||||||
|
* out[i] = scale * cos(in1[i], in2[i])
|
||||||
|
* = scale * \sum_j (in1[i][j] * in2[i][j]) /
|
||||||
|
* sqrt(sum_j (in1[i][j]^2) * sum_j (in2[i][j])^2)
|
||||||
|
*
|
||||||
|
* \param[out] output output value.
|
||||||
|
* \param[in] intput1 input value.
|
||||||
|
* \param[in] intput2 input value.
|
||||||
|
* \param[in] scale default 1.0.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
template <DeviceType Device>
|
||||||
|
void CosSimForward(typename Tensor<real, Device>::Matrix& output,
|
||||||
|
const typename Tensor<real, Device>::Matrix& input1,
|
||||||
|
const typename Tensor<real, Device>::Matrix& input2,
|
||||||
|
real scale);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Cosine Similarity BackWard for Derivative.
|
||||||
|
*
|
||||||
|
* \param[in] output grad backward loss output grad.
|
||||||
|
* \param[in] output val forward-output value.
|
||||||
|
* \param[in] input val1 forward input value 1.
|
||||||
|
* \param[in] input val2 forward input value 2.
|
||||||
|
* \param[in/out] input grad forward input grad 1.
|
||||||
|
* \param[in/out] input grad forward input grad 2.
|
||||||
|
* \param[in] scale default 1.0.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
template <DeviceType Device>
|
||||||
|
void CosSimBackward(const typename Tensor<real, Device>::Matrix& out_grad,
|
||||||
|
const typename Tensor<real, Device>::Matrix& out_value,
|
||||||
|
const typename Tensor<real, Device>::Matrix& in1_value,
|
||||||
|
const typename Tensor<real, Device>::Matrix& in2_value,
|
||||||
|
typename Tensor<real, Device>::Matrix& in1_grad,
|
||||||
|
typename Tensor<real, Device>::Matrix& in2_grad,
|
||||||
|
real scale);
|
||||||
|
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,241 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "hl_base.h"
|
||||||
|
#include "hl_device_functions.cuh"
|
||||||
|
#include "CosSimOp.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
|
||||||
|
template<int block_size>
|
||||||
|
__global__ void KeCosSim(real* output,
|
||||||
|
const real* input1,
|
||||||
|
const real* input2,
|
||||||
|
int width,
|
||||||
|
int input1_height,
|
||||||
|
int input2_height,
|
||||||
|
real scale) {
|
||||||
|
const int ty = blockIdx.y;
|
||||||
|
int tid = threadIdx.x;
|
||||||
|
|
||||||
|
__shared__ real xx[block_size];
|
||||||
|
__shared__ real yy[block_size];
|
||||||
|
__shared__ real xy[block_size];
|
||||||
|
|
||||||
|
xx[tid] = 0.0;
|
||||||
|
yy[tid] = 0.0;
|
||||||
|
xy[tid] = 0.0;
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
input1 += ty * width;
|
||||||
|
if (input2_height > 1) {
|
||||||
|
input2 += ty * width;
|
||||||
|
}
|
||||||
|
for (int index = tid; index < width; index += block_size) {
|
||||||
|
real x = input1[index];
|
||||||
|
real y = input2[index];
|
||||||
|
xx[tid] += x * x;
|
||||||
|
yy[tid] += y * y;
|
||||||
|
xy[tid] += x * y;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
for (int s = block_size / 2; s > 0; s >>= 1) {
|
||||||
|
if (tid < s) {
|
||||||
|
xx[tid] += xx[tid + s];
|
||||||
|
yy[tid] += yy[tid + s];
|
||||||
|
xy[tid] += xy[tid + s];
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
if (tid == 0) {
|
||||||
|
output[ty] = scale * xy[0] / (sqrt(xx[0]) * sqrt(yy[0]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void hlCossim(real* output,
|
||||||
|
const real* input1,
|
||||||
|
const real* input2,
|
||||||
|
size_t width,
|
||||||
|
size_t input1_height,
|
||||||
|
size_t input2_height,
|
||||||
|
real scale) {
|
||||||
|
CHECK_NOTNULL(output);
|
||||||
|
CHECK_NOTNULL(input1);
|
||||||
|
CHECK_NOTNULL(input2);
|
||||||
|
const int block_size = 256;
|
||||||
|
dim3 threads(block_size, 1);
|
||||||
|
dim3 grid(1, input1_height);
|
||||||
|
|
||||||
|
KeCosSim<block_size><<<grid, threads, 0, STREAM_DEFAULT>>>
|
||||||
|
(output, input1, input2, width, input1_height, input2_height, scale);
|
||||||
|
CHECK_SYNC("hlCossim failed");
|
||||||
|
}
|
||||||
|
|
||||||
|
template <>
|
||||||
|
void CosSimForward<DEVICE_TYPE_GPU>(GpuMatrix& out_mat,
|
||||||
|
const GpuMatrix& in1_mat,
|
||||||
|
const GpuMatrix& in2_mat,
|
||||||
|
real scale) {
|
||||||
|
CHECK(out_mat.getData() && in1_mat.getData() && in2_mat.getData());
|
||||||
|
CHECK(in1_mat.useGpu_ == true && in2_mat.useGpu_ == true)
|
||||||
|
<< "Matrix type are not GPU";
|
||||||
|
|
||||||
|
size_t num_samples = out_mat.getHeight();
|
||||||
|
size_t dim = in1_mat.getWidth();
|
||||||
|
real* out = out_mat.getData();
|
||||||
|
const real* x = in1_mat.getData();
|
||||||
|
const real* y = in2_mat.getData();
|
||||||
|
hlCossim(out, x, y, dim, in1_mat.getHeight(), in2_mat.getHeight(), scale);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<int block_size>
|
||||||
|
__global__ void KeCosSimDerivative(const real* grad,
|
||||||
|
const real* output,
|
||||||
|
const real* prev_out_x,
|
||||||
|
const real* prev_out_y,
|
||||||
|
real* prev_grad_x,
|
||||||
|
real* prev_grad_y,
|
||||||
|
size_t width,
|
||||||
|
size_t input1_height,
|
||||||
|
size_t input2_height,
|
||||||
|
real scale) {
|
||||||
|
const int ty = blockIdx.y;
|
||||||
|
int tid = threadIdx.x;
|
||||||
|
|
||||||
|
__shared__ real xx[block_size];
|
||||||
|
__shared__ real yy[block_size];
|
||||||
|
__shared__ real xy[block_size];
|
||||||
|
|
||||||
|
xx[tid] = 0.0;
|
||||||
|
yy[tid] = 0.0;
|
||||||
|
xy[tid] = 0.0;
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
prev_out_x += ty * width;
|
||||||
|
prev_grad_x += ty * width;
|
||||||
|
if (input2_height > 1) {
|
||||||
|
prev_out_y += ty * width;
|
||||||
|
prev_grad_y += ty * width;
|
||||||
|
}
|
||||||
|
for (int index = tid; index < width; index += block_size) {
|
||||||
|
real x = prev_out_x[index];
|
||||||
|
real y = prev_out_y[index];
|
||||||
|
xx[tid] += x * x;
|
||||||
|
yy[tid] += y * y;
|
||||||
|
xy[tid] += x * y;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
for (int s = block_size / 2; s > 0; s >>= 1) {
|
||||||
|
if (tid < s) {
|
||||||
|
xx[tid] += xx[tid + s];
|
||||||
|
yy[tid] += yy[tid + s];
|
||||||
|
xy[tid] += xy[tid + s];
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
if (xy[0] == 0) {
|
||||||
|
real reciprocal = 1.0 / (sqrt(xx[0]) * sqrt(yy[0]));
|
||||||
|
for (int index = tid; index < width; index += block_size) {
|
||||||
|
prev_grad_x[index] +=
|
||||||
|
scale * grad[ty] * prev_out_y[index] * reciprocal;
|
||||||
|
if (input2_height > 1) {
|
||||||
|
prev_grad_y[index] +=
|
||||||
|
scale * grad[ty] * prev_out_x[index] * reciprocal;
|
||||||
|
} else {
|
||||||
|
paddle::paddleAtomicAdd(prev_grad_y + index,
|
||||||
|
scale * grad[ty] * prev_out_x[index] * reciprocal);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
real reciprocalXY = 1.0 / xy[0];
|
||||||
|
real reciprocalSquareSumX = 1.0 / xx[0];
|
||||||
|
real reciprocalSquareSumY = 1.0 / yy[0];
|
||||||
|
for (int index = tid; index < width; index += block_size) {
|
||||||
|
prev_grad_x[index] += output[ty] * grad[ty] *
|
||||||
|
(prev_out_y[index] * reciprocalXY -
|
||||||
|
prev_out_x[index] * reciprocalSquareSumX);
|
||||||
|
if (input2_height > 1) {
|
||||||
|
prev_grad_y[index] += output[ty] * grad[ty] *
|
||||||
|
(prev_out_x[index] * reciprocalXY -
|
||||||
|
prev_out_y[index] * reciprocalSquareSumY);
|
||||||
|
} else {
|
||||||
|
paddle::paddleAtomicAdd(prev_grad_y + index, output[ty] * grad[ty] *
|
||||||
|
(prev_out_x[index] * reciprocalXY -
|
||||||
|
prev_out_y[index] * reciprocalSquareSumY));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void hlCossimDerivative(const real* grad,
|
||||||
|
const real* output,
|
||||||
|
const real* prev_out_x,
|
||||||
|
const real* prev_out_y,
|
||||||
|
real* prev_grad_x,
|
||||||
|
real* prev_grad_y,
|
||||||
|
size_t width,
|
||||||
|
size_t input1_height,
|
||||||
|
size_t input2_height,
|
||||||
|
real scale) {
|
||||||
|
CHECK_NOTNULL(grad);
|
||||||
|
CHECK_NOTNULL(output);
|
||||||
|
CHECK_NOTNULL(prev_out_x);
|
||||||
|
CHECK_NOTNULL(prev_out_y);
|
||||||
|
CHECK_NOTNULL(prev_grad_x);
|
||||||
|
CHECK_NOTNULL(prev_grad_y);
|
||||||
|
const int block_size = 256;
|
||||||
|
dim3 threads(block_size, 1);
|
||||||
|
dim3 grid(1, input1_height);
|
||||||
|
KeCosSimDerivative<block_size><<<grid, threads, 0, STREAM_DEFAULT>>>
|
||||||
|
(grad, output, prev_out_x, prev_out_y, prev_grad_x, prev_grad_y, width,
|
||||||
|
input1_height, input2_height, scale);
|
||||||
|
CHECK_SYNC("hlCossimDerivate failed");
|
||||||
|
}
|
||||||
|
|
||||||
|
template <>
|
||||||
|
void CosSimBackward<DEVICE_TYPE_GPU>(const GpuMatrix& out_grad,
|
||||||
|
const GpuMatrix& out_val,
|
||||||
|
const GpuMatrix& in1_val,
|
||||||
|
const GpuMatrix& in2_val,
|
||||||
|
GpuMatrix& in1_grad,
|
||||||
|
GpuMatrix& in2_grad,
|
||||||
|
real scale) {
|
||||||
|
CHECK(out_grad.getData() && out_val.getData() && in1_val.getData() &&
|
||||||
|
in2_val.getData() && in1_grad.getData() && in2_grad.getData());
|
||||||
|
CHECK(out_grad.useGpu_ && out_val.useGpu_ && in1_val.useGpu_
|
||||||
|
&& in2_val.useGpu_ && in1_grad.useGpu_ && in2_grad.useGpu_)
|
||||||
|
<< "Matrix types are not equally GPU";
|
||||||
|
|
||||||
|
size_t dim = in1_val.getWidth();
|
||||||
|
const real* grad = out_grad.getData();
|
||||||
|
const real* out = out_val.getData();
|
||||||
|
const real* prev_out_x = in1_val.getData();
|
||||||
|
const real* prev_out_y = in2_val.getData();
|
||||||
|
real* prev_grad_x = in1_grad.getData();
|
||||||
|
real* prev_grad_y = in2_grad.getData();
|
||||||
|
hlCossimDerivative(grad,
|
||||||
|
out,
|
||||||
|
prev_out_x,
|
||||||
|
prev_out_y,
|
||||||
|
prev_grad_x,
|
||||||
|
prev_grad_y,
|
||||||
|
dim,
|
||||||
|
in1_val.getHeight(),
|
||||||
|
in2_val.getHeight(),
|
||||||
|
scale);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,64 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include <gtest/gtest.h>
|
||||||
|
#include "FunctionTest.h"
|
||||||
|
#include "paddle/math/Matrix.h"
|
||||||
|
|
||||||
|
using namespace paddle; // NOLINT
|
||||||
|
|
||||||
|
void testCosSimForward(size_t height_x,
|
||||||
|
size_t height_y,
|
||||||
|
size_t width,
|
||||||
|
real scale) {
|
||||||
|
FunctionCompare test("CosSimForward", FuncConfig().set("scale", scale));
|
||||||
|
// prepare input arguments
|
||||||
|
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_x, width}));
|
||||||
|
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_y, width}));
|
||||||
|
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_x, 1}),
|
||||||
|
ASSIGN_TO);
|
||||||
|
// run Function
|
||||||
|
test.run();
|
||||||
|
}
|
||||||
|
|
||||||
|
void testCosSimBackward(size_t height_x,
|
||||||
|
size_t height_y,
|
||||||
|
size_t width,
|
||||||
|
real scale) {
|
||||||
|
FunctionCompare test("CosSimBackward", FuncConfig().set("scale", scale));
|
||||||
|
// prepare input arguments
|
||||||
|
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_x, 1}));
|
||||||
|
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_x, 1}));
|
||||||
|
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_x, width}));
|
||||||
|
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_y, width}));
|
||||||
|
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_x, width}),
|
||||||
|
ADD_TO);
|
||||||
|
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, TensorShape{height_y, width}),
|
||||||
|
ADD_TO);
|
||||||
|
// run Function
|
||||||
|
test.run();
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Matrix, cosSim) {
|
||||||
|
for (auto height_x : {10, 100, 1000}) {
|
||||||
|
for (auto height_y : {1, height_x}) {
|
||||||
|
for (auto width : {10, 100, 1000}) {
|
||||||
|
for (auto scale : {1.0, 2.0}) {
|
||||||
|
testCosSimForward(height_x, height_y, width, scale);
|
||||||
|
testCosSimBackward(height_x, height_y, width, scale);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue