commit
283e82f448
@ -0,0 +1,109 @@
|
||||
"""
|
||||
CIFAR Dataset.
|
||||
|
||||
URL: https://www.cs.toronto.edu/~kriz/cifar.html
|
||||
|
||||
the default train_creator, test_creator used for CIFAR-10 dataset.
|
||||
"""
|
||||
from config import DATA_HOME
|
||||
import os
|
||||
import hashlib
|
||||
import urllib2
|
||||
import shutil
|
||||
import tarfile
|
||||
import cPickle
|
||||
import itertools
|
||||
import numpy
|
||||
|
||||
__all__ = [
|
||||
'cifar_100_train_creator', 'cifar_100_test_creator', 'train_creator',
|
||||
'test_creator'
|
||||
]
|
||||
|
||||
CIFAR10_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
|
||||
CIFAR10_MD5 = 'c58f30108f718f92721af3b95e74349a'
|
||||
CIFAR100_URL = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
|
||||
CIFAR100_MD5 = 'eb9058c3a382ffc7106e4002c42a8d85'
|
||||
|
||||
|
||||
def __read_batch__(filename, sub_name):
|
||||
def reader():
|
||||
def __read_one_batch_impl__(batch):
|
||||
data = batch['data']
|
||||
labels = batch.get('labels', batch.get('fine_labels', None))
|
||||
assert labels is not None
|
||||
for sample, label in itertools.izip(data, labels):
|
||||
yield (sample / 255.0).astype(numpy.float32), int(label)
|
||||
|
||||
with tarfile.open(filename, mode='r') as f:
|
||||
names = (each_item.name for each_item in f
|
||||
if sub_name in each_item.name)
|
||||
|
||||
for name in names:
|
||||
batch = cPickle.load(f.extractfile(name))
|
||||
for item in __read_one_batch_impl__(batch):
|
||||
yield item
|
||||
|
||||
return reader
|
||||
|
||||
|
||||
def download(url, md5):
|
||||
filename = os.path.split(url)[-1]
|
||||
assert DATA_HOME is not None
|
||||
filepath = os.path.join(DATA_HOME, md5)
|
||||
if not os.path.exists(filepath):
|
||||
os.makedirs(filepath)
|
||||
__full_file__ = os.path.join(filepath, filename)
|
||||
|
||||
def __file_ok__():
|
||||
if not os.path.exists(__full_file__):
|
||||
return False
|
||||
md5_hash = hashlib.md5()
|
||||
with open(__full_file__, 'rb') as f:
|
||||
for chunk in iter(lambda: f.read(4096), b""):
|
||||
md5_hash.update(chunk)
|
||||
|
||||
return md5_hash.hexdigest() == md5
|
||||
|
||||
while not __file_ok__():
|
||||
response = urllib2.urlopen(url)
|
||||
with open(__full_file__, mode='wb') as of:
|
||||
shutil.copyfileobj(fsrc=response, fdst=of)
|
||||
return __full_file__
|
||||
|
||||
|
||||
def cifar_100_train_creator():
|
||||
fn = download(url=CIFAR100_URL, md5=CIFAR100_MD5)
|
||||
return __read_batch__(fn, 'train')
|
||||
|
||||
|
||||
def cifar_100_test_creator():
|
||||
fn = download(url=CIFAR100_URL, md5=CIFAR100_MD5)
|
||||
return __read_batch__(fn, 'test')
|
||||
|
||||
|
||||
def train_creator():
|
||||
"""
|
||||
Default train reader creator. Use CIFAR-10 dataset.
|
||||
"""
|
||||
fn = download(url=CIFAR10_URL, md5=CIFAR10_MD5)
|
||||
return __read_batch__(fn, 'data_batch')
|
||||
|
||||
|
||||
def test_creator():
|
||||
"""
|
||||
Default test reader creator. Use CIFAR-10 dataset.
|
||||
"""
|
||||
fn = download(url=CIFAR10_URL, md5=CIFAR10_MD5)
|
||||
return __read_batch__(fn, 'test_batch')
|
||||
|
||||
|
||||
def unittest():
|
||||
for _ in train_creator()():
|
||||
pass
|
||||
for _ in test_creator()():
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest()
|
Loading…
Reference in new issue