Fix row_conv doc

test=develop
revert-15774-anakin_subgraph_engine
Dang Qingqing 6 years ago
parent c00ed19df2
commit 2868232556

@ -109,23 +109,23 @@ from future subsequences in a computationally efficient manner to improve
unidirectional recurrent neural networks. The row convolution operator is unidirectional recurrent neural networks. The row convolution operator is
different from the 1D sequence convolution, and is computed as follows: different from the 1D sequence convolution, and is computed as follows:
Given an input sequence $in$ of length $t$ and input dimension $d$, Given an input sequence $X$ of length $t$ and input dimension $D$,
and a filter ($W$) of size $context \times d$, and a filter ($W$) of size $context \times D$,
the output sequence is convolved as: the output sequence is convolved as:
$$ $$
out_{i, :} = \\sum_{j=i}^{i + context} in_{j,:} \\cdot W_{i-j, :} out_{i} = \\sum_{j=i}^{i + context - 1} X_{j} \\cdot W_{j-i}
$$ $$
In the above equation: In the above equation:
* $Out_{i}$: The i-th row of output variable with shape [1, D]. * $Out_{i}$: The i-th row of output variable with shape [1, D].
* $\\tau$: Future context size. * $context$: Future context size.
* $X_{j}$: The j-th row of input variable with shape [1, D]. * $X_{j}$: The j-th row of input variable with shape [1, D].
* $W_{i-j}$: The (i-j)-th row of parameters with shape [1, D]. * $W_{j-i}$: The (j-i)-th row of parameters with shape [1, D].
More details about row_conv please refer to More details about row_conv please refer to
the design document the design document

Loading…
Cancel
Save