Merge pull request #7928 from guoshengCS/add-weight-normalization
Add weight normalization wrapper.emailweixu-patch-1
commit
29b683922a
@ -0,0 +1,121 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import numpy
|
||||||
|
import collections
|
||||||
|
import paddle.v2.fluid as fluid
|
||||||
|
import paddle.v2.fluid.core as core
|
||||||
|
from paddle.v2.fluid.initializer import ConstantInitializer
|
||||||
|
from paddle.v2.fluid.param_attr import WeightNormParamAttr
|
||||||
|
|
||||||
|
|
||||||
|
class TestWeightNormalization(unittest.TestCase):
|
||||||
|
batch_size = 3
|
||||||
|
hidden_size = 5
|
||||||
|
data_desc = (['x', [10], 0], )
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def setUpClass(cls):
|
||||||
|
cls.set_program()
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def set_program(cls):
|
||||||
|
data = fluid.layers.data(
|
||||||
|
name=cls.data_desc[0][0], shape=cls.data_desc[0][1])
|
||||||
|
out = fluid.layers.fc(input=data,
|
||||||
|
size=cls.hidden_size,
|
||||||
|
param_attr=WeightNormParamAttr(
|
||||||
|
dim=None,
|
||||||
|
name='weight_norm_param',
|
||||||
|
initializer=ConstantInitializer(1.0)),
|
||||||
|
bias_attr=False,
|
||||||
|
act=None)
|
||||||
|
loss = fluid.layers.reduce_sum(out)
|
||||||
|
fluid.backward.append_backward(loss=loss)
|
||||||
|
cls.fetch_list = [
|
||||||
|
'weight_norm_param_g', 'weight_norm_param_v',
|
||||||
|
'weight_norm_param_g@GRAD'
|
||||||
|
]
|
||||||
|
|
||||||
|
def run_program(self):
|
||||||
|
outputs = []
|
||||||
|
places = [core.CPUPlace()]
|
||||||
|
if core.is_compiled_with_cuda():
|
||||||
|
places.append(core.CUDAPlace(0))
|
||||||
|
for place in places:
|
||||||
|
self.set_inputs(place)
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
exe.run(fluid.default_startup_program())
|
||||||
|
output = exe.run(fluid.default_main_program(),
|
||||||
|
feed=self.inputs,
|
||||||
|
fetch_list=self.fetch_list,
|
||||||
|
return_numpy=False)
|
||||||
|
outputs.append(output)
|
||||||
|
self.actual_outputs = outputs
|
||||||
|
|
||||||
|
def set_data(self):
|
||||||
|
self.data = collections.OrderedDict()
|
||||||
|
for desc in self.data_desc:
|
||||||
|
data_name = desc[0]
|
||||||
|
data_shape = desc[1]
|
||||||
|
data_lod_level = desc[2]
|
||||||
|
data_lod = []
|
||||||
|
for i in range(data_lod_level):
|
||||||
|
lod_level_i = numpy.random.randint(
|
||||||
|
low=1,
|
||||||
|
high=5,
|
||||||
|
size=self.batch_size if i == 0 else lod_level_i[-1])
|
||||||
|
lod_level_i = [0] + numpy.cumsum(lod_level_i).tolist()
|
||||||
|
data_lod.append(lod_level_i)
|
||||||
|
data_value = numpy.random.random(
|
||||||
|
size=[data_lod[-1][-1] if data_lod else self.batch_size
|
||||||
|
] + data_shape).astype('float32')
|
||||||
|
self.data[data_name] = (data_value, data_lod)
|
||||||
|
|
||||||
|
def set_inputs(self, place):
|
||||||
|
self.inputs = {}
|
||||||
|
for desc in self.data_desc:
|
||||||
|
tensor = fluid.Tensor()
|
||||||
|
tensor.set(self.data[desc[0]][0], place)
|
||||||
|
if self.data[desc[0]][1]:
|
||||||
|
tensor.set_lod(self.data[desc[0]][1])
|
||||||
|
self.inputs[desc[0]] = tensor
|
||||||
|
|
||||||
|
def weight_normalize(self):
|
||||||
|
v = numpy.ones((self.data[self.data_desc[0][0]][0].shape[-1],
|
||||||
|
self.hidden_size))
|
||||||
|
g = numpy.linalg.norm(v, axis=None, keepdims=True)
|
||||||
|
w = g * v / numpy.linalg.norm(v, axis=None, keepdims=True)
|
||||||
|
x = self.data[self.data_desc[0][0]][0]
|
||||||
|
out = numpy.dot(x, w)
|
||||||
|
g_grad = (numpy.dot(x.T, numpy.ones_like(out)) * (v / numpy.linalg.norm(
|
||||||
|
v, axis=None, keepdims=True))).sum(axis=None, keepdims=True)
|
||||||
|
return g, v, g_grad
|
||||||
|
|
||||||
|
def test_weight_normalization(self):
|
||||||
|
self.set_data()
|
||||||
|
self.run_program()
|
||||||
|
expect_output = self.weight_normalize()
|
||||||
|
for actual_output in self.actual_outputs:
|
||||||
|
[
|
||||||
|
self.assertTrue(
|
||||||
|
numpy.allclose(
|
||||||
|
numpy.array(actual), expect, atol=0.001))
|
||||||
|
for expect, actual in zip(expect_output, actual_output)
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue