Stack LSTM Net for Paddle Book6 (#5503)
* add lstm layer * set hidden shape * rename input parameter * add dynamic lstm * refine dynamic lstm layer * change parameter using XavierInitializer by default * refine dynamic lstm layermobile_baidu
parent
9c25218361
commit
29f494f365
@ -0,0 +1,110 @@
|
|||||||
|
import paddle.v2 as paddle
|
||||||
|
import paddle.v2.framework.layers as layers
|
||||||
|
import paddle.v2.framework.nets as nets
|
||||||
|
import paddle.v2.framework.core as core
|
||||||
|
import paddle.v2.framework.optimizer as optimizer
|
||||||
|
|
||||||
|
from paddle.v2.framework.framework import Program, g_main_program, g_startup_program
|
||||||
|
from paddle.v2.framework.executor import Executor
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def stacked_lstm_net(input_dim,
|
||||||
|
class_dim=2,
|
||||||
|
emb_dim=128,
|
||||||
|
hid_dim=512,
|
||||||
|
stacked_num=3):
|
||||||
|
assert stacked_num % 2 == 1
|
||||||
|
data = layers.data(name="words", shape=[1], data_type="int64")
|
||||||
|
label = layers.data(name="label", shape=[1], data_type="int64")
|
||||||
|
|
||||||
|
emb = layers.embedding(input=data, size=[input_dim, emb_dim])
|
||||||
|
# add bias attr
|
||||||
|
|
||||||
|
# TODO(qijun) linear act
|
||||||
|
fc1 = layers.fc(input=emb, size=hid_dim)
|
||||||
|
lstm1, cell1 = layers.dynamic_lstm(input=fc1, size=hid_dim)
|
||||||
|
|
||||||
|
inputs = [fc1, lstm1]
|
||||||
|
|
||||||
|
for i in range(2, stacked_num + 1):
|
||||||
|
fc = layers.fc(input=inputs, size=hid_dim)
|
||||||
|
lstm, cell = layers.dynamic_lstm(
|
||||||
|
input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
|
||||||
|
inputs = [fc, lstm]
|
||||||
|
|
||||||
|
fc_last = layers.sequence_pool(input=inputs[0], pool_type='max')
|
||||||
|
lstm_last = layers.sequence_pool(input=inputs[1], pool_type='max')
|
||||||
|
|
||||||
|
prediction = layers.fc(input=[fc_last, lstm_last],
|
||||||
|
size=class_dim,
|
||||||
|
act='softmax')
|
||||||
|
cost = layers.cross_entropy(input=prediction, label=label)
|
||||||
|
avg_cost = layers.mean(x=cost)
|
||||||
|
adam_optimizer = optimizer.AdamOptimizer(learning_rate=0.002)
|
||||||
|
opts = adam_optimizer.minimize(avg_cost)
|
||||||
|
acc = layers.accuracy(input=prediction, label=label)
|
||||||
|
return avg_cost, acc
|
||||||
|
|
||||||
|
|
||||||
|
def to_lodtensor(data, place):
|
||||||
|
seq_lens = [len(seq) for seq in data]
|
||||||
|
cur_len = 0
|
||||||
|
lod = [cur_len]
|
||||||
|
for l in seq_lens:
|
||||||
|
cur_len += l
|
||||||
|
lod.append(cur_len)
|
||||||
|
flattened_data = np.concatenate(data, axis=0).astype("int64")
|
||||||
|
flattened_data = flattened_data.reshape([len(flattened_data), 1])
|
||||||
|
res = core.LoDTensor()
|
||||||
|
res.set(flattened_data, place)
|
||||||
|
res.set_lod([lod])
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
BATCH_SIZE = 100
|
||||||
|
PASS_NUM = 5
|
||||||
|
|
||||||
|
word_dict = paddle.dataset.imdb.word_dict()
|
||||||
|
print "load word dict successfully"
|
||||||
|
dict_dim = len(word_dict)
|
||||||
|
class_dim = 2
|
||||||
|
|
||||||
|
cost, acc = stacked_lstm_net(input_dim=dict_dim, class_dim=class_dim)
|
||||||
|
|
||||||
|
train_data = paddle.batch(
|
||||||
|
paddle.reader.shuffle(
|
||||||
|
paddle.dataset.imdb.train(word_dict), buf_size=1000),
|
||||||
|
batch_size=BATCH_SIZE)
|
||||||
|
place = core.CPUPlace()
|
||||||
|
exe = Executor(place)
|
||||||
|
|
||||||
|
exe.run(g_startup_program)
|
||||||
|
|
||||||
|
for pass_id in xrange(PASS_NUM):
|
||||||
|
for data in train_data():
|
||||||
|
tensor_words = to_lodtensor(map(lambda x: x[0], data), place)
|
||||||
|
|
||||||
|
label = np.array(map(lambda x: x[1], data)).astype("int64")
|
||||||
|
label = label.reshape([BATCH_SIZE, 1])
|
||||||
|
|
||||||
|
tensor_label = core.LoDTensor()
|
||||||
|
tensor_label.set(label, place)
|
||||||
|
|
||||||
|
outs = exe.run(g_main_program,
|
||||||
|
feed={"words": tensor_words,
|
||||||
|
"label": tensor_label},
|
||||||
|
fetch_list=[cost, acc])
|
||||||
|
cost_val = np.array(outs[0])
|
||||||
|
acc_val = np.array(outs[1])
|
||||||
|
|
||||||
|
print("cost=" + str(cost_val) + " acc=" + str(acc_val))
|
||||||
|
if cost_val < 1.0 and acc_val > 0.7:
|
||||||
|
exit(0)
|
||||||
|
exit(1)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
Loading…
Reference in new issue