Add distribution implement of image classification. (#7687)
Add distribution implement of image classificationadd_depthwiseConv_op_gpu
parent
2ad6c8bc45
commit
2ac46d538d
@ -0,0 +1,173 @@
|
||||
#Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
#Licensed under the Apache License, Version 2.0 (the "License");
|
||||
#you may not use this file except in compliance with the License.
|
||||
#You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
#Unless required by applicable law or agreed to in writing, software
|
||||
#distributed under the License is distributed on an "AS IS" BASIS,
|
||||
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
#See the License for the specific language governing permissions and
|
||||
#limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import sys
|
||||
|
||||
import paddle.v2 as paddle
|
||||
import paddle.v2.fluid as fluid
|
||||
import os
|
||||
import sys
|
||||
|
||||
TRAINERS = 5
|
||||
BATCH_SIZE = 128
|
||||
PASS_NUM = 100
|
||||
|
||||
|
||||
def resnet_cifar10(input, depth=32):
|
||||
def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
|
||||
tmp = fluid.layers.conv2d(
|
||||
input=input,
|
||||
filter_size=filter_size,
|
||||
num_filters=ch_out,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
act=None,
|
||||
bias_attr=False)
|
||||
return fluid.layers.batch_norm(input=tmp, act=act)
|
||||
|
||||
def shortcut(input, ch_in, ch_out, stride):
|
||||
if ch_in != ch_out:
|
||||
return conv_bn_layer(input, ch_out, 1, stride, 0, None)
|
||||
else:
|
||||
return input
|
||||
|
||||
def basicblock(input, ch_in, ch_out, stride):
|
||||
tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
|
||||
tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None)
|
||||
short = shortcut(input, ch_in, ch_out, stride)
|
||||
return fluid.layers.elementwise_add(x=tmp, y=short, act='relu')
|
||||
|
||||
def layer_warp(block_func, input, ch_in, ch_out, count, stride):
|
||||
tmp = block_func(input, ch_in, ch_out, stride)
|
||||
for i in range(1, count):
|
||||
tmp = block_func(tmp, ch_out, ch_out, 1)
|
||||
return tmp
|
||||
|
||||
assert (depth - 2) % 6 == 0
|
||||
n = (depth - 2) / 6
|
||||
conv1 = conv_bn_layer(
|
||||
input=input, ch_out=16, filter_size=3, stride=1, padding=1)
|
||||
res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
|
||||
res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
|
||||
res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
|
||||
pool = fluid.layers.pool2d(
|
||||
input=res3, pool_size=8, pool_type='avg', pool_stride=1)
|
||||
return pool
|
||||
|
||||
|
||||
def vgg16_bn_drop(input):
|
||||
def conv_block(input, num_filter, groups, dropouts):
|
||||
return fluid.nets.img_conv_group(
|
||||
input=input,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
conv_num_filter=[num_filter] * groups,
|
||||
conv_filter_size=3,
|
||||
conv_act='relu',
|
||||
conv_with_batchnorm=True,
|
||||
conv_batchnorm_drop_rate=dropouts,
|
||||
pool_type='max')
|
||||
|
||||
conv1 = conv_block(input, 64, 2, [0.3, 0])
|
||||
conv2 = conv_block(conv1, 128, 2, [0.4, 0])
|
||||
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
|
||||
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
|
||||
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
|
||||
|
||||
drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
|
||||
fc1 = fluid.layers.fc(input=drop, size=512, act=None)
|
||||
bn = fluid.layers.batch_norm(input=fc1, act='relu')
|
||||
drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
|
||||
fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
|
||||
return fc2
|
||||
|
||||
|
||||
classdim = 10
|
||||
data_shape = [3, 32, 32]
|
||||
|
||||
images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
|
||||
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
||||
|
||||
net_type = "vgg"
|
||||
if len(sys.argv) >= 2:
|
||||
net_type = sys.argv[1]
|
||||
|
||||
if net_type == "vgg":
|
||||
print("train vgg net")
|
||||
net = vgg16_bn_drop(images)
|
||||
elif net_type == "resnet":
|
||||
print("train resnet")
|
||||
net = resnet_cifar10(images, 32)
|
||||
else:
|
||||
raise ValueError("%s network is not supported" % net_type)
|
||||
|
||||
predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
|
||||
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
||||
avg_cost = fluid.layers.mean(x=cost)
|
||||
|
||||
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
|
||||
optimize_ops, params_grads = optimizer.minimize(avg_cost)
|
||||
|
||||
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
|
||||
|
||||
train_reader = paddle.batch(
|
||||
paddle.reader.shuffle(
|
||||
paddle.dataset.cifar.train10(), buf_size=128 * 10),
|
||||
batch_size=BATCH_SIZE)
|
||||
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
|
||||
t = fluid.DistributeTranspiler()
|
||||
# all parameter server endpoints list for spliting parameters
|
||||
pserver_endpoints = os.getenv("PSERVERS")
|
||||
# server endpoint for current node
|
||||
current_endpoint = os.getenv("SERVER_ENDPOINT")
|
||||
# run as trainer or parameter server
|
||||
training_role = os.getenv("TRAINING_ROLE",
|
||||
"TRAINER") # get the training role: trainer/pserver
|
||||
t.transpile(
|
||||
optimize_ops, params_grads, pservers=pserver_endpoints, trainers=TRAINERS)
|
||||
|
||||
if training_role == "PSERVER":
|
||||
if not current_endpoint:
|
||||
print("need env SERVER_ENDPOINT")
|
||||
exit(1)
|
||||
print("start pserver at:", current_endpoint)
|
||||
pserver_prog = t.get_pserver_program(current_endpoint)
|
||||
pserver_startup = t.get_startup_program(current_endpoint, pserver_prog)
|
||||
exe.run(pserver_startup)
|
||||
exe.run(pserver_prog)
|
||||
print("pserver run end")
|
||||
elif training_role == "TRAINER":
|
||||
print("start trainer")
|
||||
trainer_prog = t.get_trainer_program()
|
||||
feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
|
||||
exe.run(fluid.default_startup_program())
|
||||
for pass_id in range(PASS_NUM):
|
||||
accuracy.reset(exe)
|
||||
for data in train_reader():
|
||||
loss, acc = exe.run(trainer_prog,
|
||||
feed=feeder.feed(data),
|
||||
fetch_list=[avg_cost] + accuracy.metrics)
|
||||
pass_acc = accuracy.eval(exe)
|
||||
print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str(
|
||||
pass_acc))
|
||||
# this model is slow, so if we can train two mini batch, we think it works properly.
|
||||
print("trainer run end")
|
||||
else:
|
||||
print("environment var TRAINER_ROLE should be TRAINER os PSERVER")
|
||||
exit(1)
|
Loading…
Reference in new issue