add expand_as op, test=develop (#20565)
* add expand_as op, test=develop * add expand_as op,test=develop * add expand_as op,test=develop * add nn.py, test=develop * delele paddle_enforce, test=developrevert-20712-fix_depthwise_conv
parent
5c41805dc9
commit
2ff18e537f
@ -0,0 +1,127 @@
|
||||
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/expand_as_op.h"
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using framework::Tensor;
|
||||
|
||||
class ExpandAsOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true);
|
||||
PADDLE_ENFORCE_EQ(ctx->HasInput("target_tensor"), true);
|
||||
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true);
|
||||
auto x_dims = ctx->GetInputDim("X");
|
||||
auto target_tensor_dims = ctx->GetInputDim("target_tensor");
|
||||
PADDLE_ENFORCE_EQ(static_cast<size_t>(x_dims.size()),
|
||||
target_tensor_dims.size(),
|
||||
"The rank of input(target_tensor) must be equal "
|
||||
"to the rank of Input(X).");
|
||||
PADDLE_ENFORCE_LE(x_dims.size(), 6,
|
||||
"The rank of Input(X) must not be greater than 6.");
|
||||
std::vector<int64_t> out_shape(x_dims.size());
|
||||
ctx->SetOutputDim("Out", framework::make_ddim(out_shape));
|
||||
}
|
||||
};
|
||||
|
||||
class ExpandAsOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
void Make() override {
|
||||
AddInput("X",
|
||||
"(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
|
||||
"X is the input to be expanded.");
|
||||
AddOutput("Out",
|
||||
"(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
|
||||
"The rank of Output(Out) have the same with Input(X). "
|
||||
"After expanding, size of each dimension of Output(Out) is equal "
|
||||
"to size of the corresponding dimension of Input(X) multiplying "
|
||||
"the corresponding value given by Attr(expand_times).");
|
||||
AddInput("target_tensor", "Expand tensor's shape for each dimension.");
|
||||
AddComment(R"DOC(
|
||||
Expand as operator tiles the input by given times number. You should set times
|
||||
number for each dimension by providing tensor 'expend_tensor'. The rank of X
|
||||
should be in [1, 6]. Please note that size of 'expend_tensor' must be the same
|
||||
with X's rank. Following is a using case:
|
||||
Input(X) is a 3-D tensor with shape [2, 3, 1]:
|
||||
[
|
||||
[[1], [2], [3]],
|
||||
[[4], [5], [6]]
|
||||
]
|
||||
target_tensors'shape: [2, 6, 2]
|
||||
Output(Out) is a 3-D tensor with shape [2, 6, 2]:
|
||||
[
|
||||
[[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
|
||||
[[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
|
||||
]
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class ExpandAsGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true);
|
||||
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true);
|
||||
|
||||
auto x_dims = ctx->GetInputDim("X");
|
||||
auto x_grad_name = framework::GradVarName("X");
|
||||
if (ctx->HasOutput(x_grad_name)) {
|
||||
ctx->SetOutputDim(x_grad_name, x_dims);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class ExpandAsGradOpDescMaker : public framework::SingleGradOpDescMaker {
|
||||
public:
|
||||
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
||||
|
||||
protected:
|
||||
std::unique_ptr<framework::OpDesc> Apply() const override {
|
||||
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
|
||||
op->SetType("expand_as_grad");
|
||||
op->SetInput("X", Input("X"));
|
||||
op->SetInput("target_tensor", Input("target_tensor"));
|
||||
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
||||
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
||||
op->SetAttrMap(Attrs());
|
||||
return op;
|
||||
}
|
||||
};
|
||||
|
||||
// DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ExpandGradNoNeedBufVarsInferer, "X");
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OPERATOR(expand_as, ops::ExpandAsOp, ops::ExpandAsOpMaker,
|
||||
ops::ExpandAsGradOpDescMaker);
|
||||
REGISTER_OPERATOR(expand_as_grad, ops::ExpandAsGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
expand_as, ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, double>,
|
||||
ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, int>,
|
||||
ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, bool>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
expand_as_grad,
|
||||
ops::ExpandAsGradKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::ExpandAsGradKernel<paddle::platform::CPUDeviceContext, double>);
|
@ -0,0 +1,22 @@
|
||||
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
#include "paddle/fluid/operators/expand_as_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
expand_as, ops::ExpandAsKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::ExpandAsKernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::ExpandAsKernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::ExpandAsKernel<paddle::platform::CUDADeviceContext, bool>);
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
expand_as_grad,
|
||||
ops::ExpandAsGradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::ExpandAsGradKernel<paddle::platform::CUDADeviceContext, double>);
|
@ -0,0 +1,185 @@
|
||||
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include <boost/preprocessor/arithmetic/div.hpp>
|
||||
#include <boost/preprocessor/arithmetic/mod.hpp>
|
||||
#include <boost/preprocessor/comparison/greater.hpp>
|
||||
#include <boost/preprocessor/comparison/greater_equal.hpp>
|
||||
#include <boost/preprocessor/control/if.hpp>
|
||||
#include <boost/preprocessor/repetition/repeat.hpp>
|
||||
#include "paddle/fluid/framework/eigen.h"
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/framework/operator.h"
|
||||
|
||||
#define MAX_RANK_SUPPORTED 6
|
||||
|
||||
#define EXPAND_AS_TEMPLATE(z, n, data) \
|
||||
case n + 1: { \
|
||||
ExpandAs<n + 1>(context); \
|
||||
break; \
|
||||
}
|
||||
#define REP_EXPAND_AS_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_AS_TEMPLATE, ~)
|
||||
#define COND(n) \
|
||||
BOOST_PP_GREATER_EQUAL(BOOST_PP_DIV(n, MAX_RANK_SUPPORTED), \
|
||||
BOOST_PP_MOD(n, MAX_RANK_SUPPORTED))
|
||||
#define EXPAND_AS_GRAD_CASE(n) \
|
||||
case n: { \
|
||||
ExpandAsBackward<n>(context, reshape_dims_vec, reduce_dims_vec); \
|
||||
break; \
|
||||
}
|
||||
#define EXPAND_AS_GRAD_TEMPLATE(z, n, data) \
|
||||
BOOST_PP_IF(COND(n), EXPAND_AS_GRAD_CASE(n), )
|
||||
#define REP_EXPAND_AS_GRAD_TEMPLATE(n) \
|
||||
BOOST_PP_REPEAT(n, EXPAND_AS_GRAD_TEMPLATE, ~)
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
template <typename T, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||||
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class ExpandAsKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto rank = context.Input<Tensor>("X")->dims().size();
|
||||
switch (rank) {
|
||||
REP_EXPAND_AS_TEMPLATE(MAX_RANK_SUPPORTED)
|
||||
default:
|
||||
PADDLE_THROW("Only support tensor with rank being between 1 and 6.");
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
template <int Rank>
|
||||
void ExpandAs(const framework::ExecutionContext& context) const {
|
||||
auto* in0 = context.Input<Tensor>("X");
|
||||
auto in_dims = in0->dims();
|
||||
auto* target_tensor = context.Input<Tensor>("target_tensor");
|
||||
auto* out0 = context.Output<Tensor>("Out");
|
||||
Eigen::DSizes<int, Rank> bcast_dims;
|
||||
int bcast_dims_remainder = 0;
|
||||
auto x_dims = in0->dims();
|
||||
auto y_dims = target_tensor->dims();
|
||||
for (int i = 0; i < y_dims.size(); ++i) {
|
||||
PADDLE_ENFORCE_NE(x_dims[i], 0, "X(input) should not have 0 dim");
|
||||
bcast_dims[i] = y_dims[i] / x_dims[i];
|
||||
bcast_dims_remainder += y_dims[i] % x_dims[i];
|
||||
}
|
||||
PADDLE_ENFORCE_EQ(bcast_dims_remainder, 0,
|
||||
"X(input) could not be broadcast together with remapped "
|
||||
"shape(expand tensor's shape)");
|
||||
framework::DDim out_dims(in_dims);
|
||||
for (size_t i = 0; i < bcast_dims.size(); ++i) {
|
||||
out_dims[i] *= bcast_dims[i];
|
||||
}
|
||||
|
||||
out0->Resize(out_dims);
|
||||
auto x = EigenTensor<T, Rank>::From(*in0);
|
||||
out0->mutable_data<T>(context.GetPlace());
|
||||
auto y = EigenTensor<T, Rank>::From(*out0);
|
||||
auto& place =
|
||||
*context.template device_context<DeviceContext>().eigen_device();
|
||||
y.device(place) = x.broadcast(bcast_dims);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class ExpandAsGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto* in0 = context.Input<Tensor>("X");
|
||||
auto* target_tensor = context.Input<Tensor>("target_tensor");
|
||||
auto x_dims = in0->dims();
|
||||
auto y_dims = target_tensor->dims();
|
||||
std::vector<int> bcast_dims;
|
||||
for (int i = 0; i < y_dims.size(); ++i) {
|
||||
bcast_dims.push_back(y_dims[i] / x_dims[i]);
|
||||
}
|
||||
std::vector<int> reshape_dims_vec;
|
||||
std::vector<int> reduce_dims_vec;
|
||||
for (size_t i = 0; i < bcast_dims.size(); ++i) {
|
||||
if (bcast_dims[i] == 1) {
|
||||
reshape_dims_vec.push_back(x_dims[i]);
|
||||
} else {
|
||||
if (x_dims[i] == 1) {
|
||||
reduce_dims_vec.push_back(reshape_dims_vec.size());
|
||||
reshape_dims_vec.push_back(bcast_dims[i]);
|
||||
} else {
|
||||
reduce_dims_vec.push_back(reshape_dims_vec.size());
|
||||
reshape_dims_vec.push_back(bcast_dims[i]);
|
||||
reshape_dims_vec.push_back(x_dims[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
int dims = reshape_dims_vec.size() * MAX_RANK_SUPPORTED +
|
||||
reduce_dims_vec.size() - MAX_RANK_SUPPORTED - 1;
|
||||
// no need reduce, just copy
|
||||
if (reduce_dims_vec.size() == 0) {
|
||||
auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||
auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
|
||||
out0->mutable_data<T>(context.GetPlace());
|
||||
framework::TensorCopy(*in0, context.GetPlace(), context.device_context(),
|
||||
out0);
|
||||
} else {
|
||||
switch (dims) {
|
||||
REP_EXPAND_AS_GRAD_TEMPLATE(72)
|
||||
default:
|
||||
PADDLE_THROW("Only support tensor with rank being between 1 and 6.");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
template <int Dims>
|
||||
void ExpandAsBackward(const framework::ExecutionContext& context,
|
||||
const std::vector<int>& reshape_dims_vec,
|
||||
const std::vector<int>& reduce_dims_vec) const {
|
||||
size_t reshape_size = Dims / MAX_RANK_SUPPORTED + 1;
|
||||
size_t reduce_size = Dims % MAX_RANK_SUPPORTED + 1;
|
||||
PADDLE_ENFORCE_EQ(reshape_size, reshape_dims_vec.size(),
|
||||
"Inconsistent size between template Dims and "
|
||||
"reshape dimensions.");
|
||||
PADDLE_ENFORCE_EQ(reduce_size, reduce_dims_vec.size(),
|
||||
"Inconsistent size between template Dims and "
|
||||
"reduce dimensions.");
|
||||
auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||
auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
|
||||
out0->mutable_data<T>(context.GetPlace());
|
||||
auto x_grad = EigenVector<T>::Flatten(*out0);
|
||||
Eigen::DSizes<int, Dims / MAX_RANK_SUPPORTED + 1> reshape_dims;
|
||||
for (size_t i = 0; i < reshape_size; ++i) {
|
||||
reshape_dims[i] = reshape_dims_vec[i];
|
||||
}
|
||||
Eigen::DSizes<int, Dims % MAX_RANK_SUPPORTED + 1> reduce_dims;
|
||||
for (size_t i = 0; i < reduce_size; ++i) {
|
||||
reduce_dims[i] = reduce_dims_vec[i];
|
||||
}
|
||||
auto out_grad = EigenVector<T>::Flatten(*in0);
|
||||
x_grad.device(
|
||||
*context.template device_context<DeviceContext>().eigen_device()) =
|
||||
out_grad.reshape(reshape_dims)
|
||||
.sum(reduce_dims)
|
||||
.reshape(x_grad.dimensions());
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,130 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
import paddle.fluid as fluid
|
||||
|
||||
|
||||
def bcast(x, target_tensor):
|
||||
x_dims = x.shape
|
||||
y_dims = target_tensor.shape
|
||||
bcast_dims = []
|
||||
for i in range(len(x_dims)):
|
||||
bcast_dims.append(int(y_dims[i] / x_dims[i]))
|
||||
bcast_dims = np.array(bcast_dims).astype("int64")
|
||||
return bcast_dims
|
||||
|
||||
|
||||
class TestExpandAsOpRank1(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "expand_as"
|
||||
x = np.random.rand(12).astype("float64")
|
||||
target_tensor = np.random.rand(24).astype("float64")
|
||||
self.inputs = {'X': x, 'target_tensor': target_tensor}
|
||||
self.attrs = {}
|
||||
bcast_dims = bcast(x, target_tensor)
|
||||
output = np.tile(self.inputs['X'], bcast_dims)
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class TestExpandAsOpRank2(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "expand_as"
|
||||
x = np.random.rand(2, 3).astype("float64")
|
||||
target_tensor = np.random.rand(4, 6).astype("float64")
|
||||
self.inputs = {'X': x, 'target_tensor': target_tensor}
|
||||
self.attrs = {}
|
||||
bcast_dims = bcast(x, target_tensor)
|
||||
output = np.tile(self.inputs['X'], bcast_dims)
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class TestExpandAsOpRank3(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "expand_as"
|
||||
x = np.random.rand(2, 3, 3).astype("float64")
|
||||
target_tensor = np.random.rand(4, 6, 6).astype("float64")
|
||||
self.inputs = {'X': x, 'target_tensor': target_tensor}
|
||||
self.attrs = {}
|
||||
bcast_dims = bcast(x, target_tensor)
|
||||
output = np.tile(self.inputs['X'], bcast_dims)
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class TestExpandAsOpRank4(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "expand_as"
|
||||
x = np.random.rand(1, 1, 3, 16).astype("float64")
|
||||
target_tensor = np.random.rand(4, 6, 6, 32).astype("float64")
|
||||
self.inputs = {'X': x, 'target_tensor': target_tensor}
|
||||
self.attrs = {}
|
||||
bcast_dims = bcast(x, target_tensor)
|
||||
output = np.tile(self.inputs['X'], bcast_dims)
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
# Test python API
|
||||
class TestExpandAPI(OpTest):
|
||||
def test_api(self):
|
||||
input1 = np.random.random([12, 14]).astype("float32")
|
||||
input2 = np.random.random([48, 14]).astype("float32")
|
||||
x = fluid.layers.data(
|
||||
name='x', shape=[12, 14], append_batch_size=False, dtype="float32")
|
||||
|
||||
y = fluid.layers.data(
|
||||
name='target_tensor',
|
||||
shape=[48, 14],
|
||||
append_batch_size=False,
|
||||
dtype="float32")
|
||||
|
||||
out_1 = fluid.layers.expand_as(x, target_tensor=y)
|
||||
|
||||
exe = fluid.Executor(place=fluid.CPUPlace())
|
||||
res_1 = exe.run(fluid.default_main_program(),
|
||||
feed={"x": input1,
|
||||
"target_tensor": input2},
|
||||
fetch_list=[out_1])
|
||||
assert np.array_equal(res_1[0], np.tile(input1, (4, 1)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue