f7c96f079b
Qiao Longfei 6 years ago
parent 2b6c0c09d6
commit 312b7786d9

@ -1,114 +0,0 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/distributed_ops/lookup_remote_table_op.h"
#include "paddle/fluid/framework/var_type_inference.h"
namespace paddle {
namespace operators {
class LookupRemoteTableOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("W"),
"Input(W) of LookupRemoteTableOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Ids"),
"Input(Ids) of LookupRemoteTableOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of LookupRemoteTableOp should not be null.");
auto table_dims = ctx->GetInputDim("W");
auto ids_dims = ctx->GetInputDim("Ids");
int ids_rank = ids_dims.size();
PADDLE_ENFORCE_EQ(table_dims.size(), 2);
PADDLE_ENFORCE_EQ(ids_dims[ids_rank - 1], 1,
"The last dimension of the 'Ids' tensor must be 1.");
auto output_dims =
framework::vectorize(framework::slice_ddim(ids_dims, 0, ids_rank - 1));
output_dims.push_back(table_dims[1]);
ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
if (ctx->GetOutputsVarType("Out")[0] ==
framework::proto::VarType::LOD_TENSOR) {
ctx->ShareLoD("Ids", /*->*/ "Out");
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W"));
return framework::OpKernelType(data_type, ctx.device_context());
}
};
class LookupRemoteTableOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("W",
"(Tensor) The input represents embedding tensors, "
"which is a learnable parameter.");
AddInput("Ids",
"An input with type int32 or int64 "
"contains the ids to be looked up in W. "
"The last dimension size must be 1.");
AddOutput("Out", "The lookup results, which have the same type as W.");
AddAttr<std::vector<int64_t>>("height_sections",
"Height for each output SelectedRows.")
.SetDefault(std::vector<int64_t>({}));
AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
AddAttr<std::vector<std::string>>(
"epmap",
"(string vector, default 127.0.0.1:6164)"
"Server endpoints in the order of input variables for mapping")
.SetDefault({"127.0.0.1:6164"});
AddAttr<int64_t>("padding_idx",
"(int64, default -1) "
"If the value is -1, it makes no effect to lookup. "
"Otherwise the given value indicates padding the output "
"with zeros whenever lookup encounters it in Ids.")
.SetDefault(kNoPadding);
// NOTE(minqiyang): grad_inplace is an temporal attribute,
// please do NOT set this attribute in python layer.
AddAttr<bool>("grad_inplace",
"(boolean, default false) "
"If the grad op reuse the input's variable.")
.SetDefault(false);
AddComment(R"DOC(
Lookup Remote Table Operator.
This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(lookup_remote_table, ops::LookupRemoteTableOp,
paddle::framework::EmptyGradOpMaker,
ops::LookupRemoteTableOpMaker);
REGISTER_OP_CPU_KERNEL(lookup_remote_table, ops::LookupRemoteTableKernel<float>,
ops::LookupRemoteTableKernel<double>);

@ -98,7 +98,7 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
"epmap",
"(string vector, default 127.0.0.1:6164)"
"Server endpoints in the order of input variables for mapping")
.SetDefault({"127.0.0.1:6164"});
.SetDefault({});
AddComment(R"DOC(
Lookup Table Operator.

@ -51,10 +51,11 @@ class LookupTableKernel : public framework::OpKernel<T> {
auto out_name = context.Outputs("Out").front();
auto table_name = context.Inputs("W").front();
auto epmap = context.Attr<std::vector<std::string>>("epmap");
auto remote_prefetch = context.Attr<bool>("remote_prefetch");
auto height_sections =
context.Attr<std::vector<int64_t>>("height_sections");
if (!epmap.empty()) {
if (remote_prefetch) {
// if emap is not empty, then the paramter will be fetched from remote parameter
// server
#ifdef PADDLE_WITH_DISTRIBUTE

Loading…
Cancel
Save