Rename Argument::sumCost to Argument::cost since Argument should not know about cost.

cost is Argument, but argument does not have to be cost.
avx_docs
Helin Wang 8 years ago
parent 981eccb0fc
commit 3219c831a1

@ -144,9 +144,7 @@ void Arguments::setSlotSequenceDim(size_t idx, IVector* vec) throw(RangeError) {
a.cpuSequenceDims = m->cast<paddle::IVector>(vec->getSharedPtr()); a.cpuSequenceDims = m->cast<paddle::IVector>(vec->getSharedPtr());
} }
float Arguments::sumCosts() const { float Arguments::sum() const { return paddle::Argument::sum(m->outputs); }
return paddle::Argument::sumCosts(m->outputs);
}
int64_t Arguments::getBatchSize(size_t idx) const throw(RangeError) { int64_t Arguments::getBatchSize(size_t idx) const throw(RangeError) {
auto& a = m->getArg(idx); auto& a = m->getArg(idx);

@ -453,7 +453,7 @@ public:
IVector* vec) throw(RangeError); IVector* vec) throw(RangeError);
void setSlotSequenceDim(size_t idx, IVector* vec) throw(RangeError); void setSlotSequenceDim(size_t idx, IVector* vec) throw(RangeError);
float sumCosts() const; float sum() const;
private: private:
static Arguments* createByPaddleArgumentVector(void* ptr); static Arguments* createByPaddleArgumentVector(void* ptr);

@ -22,7 +22,7 @@ class TestArguments(unittest.TestCase):
args = swig_paddle.Arguments.createArguments(1) args = swig_paddle.Arguments.createArguments(1)
args.setSlotValue(0, m) args.setSlotValue(0, m)
self.assertAlmostEqual(27.0, args.sumCosts()) self.assertAlmostEqual(27.0, args.sum())
mat = args.getSlotValue(0) mat = args.getSlotValue(0)
assert isinstance(mat, swig_paddle.Matrix) assert isinstance(mat, swig_paddle.Matrix)

@ -24,7 +24,7 @@ real getCostSum(LayerPtr& testLayer, MatrixPtr weights) {
if (weights) { if (weights) {
outArgs[0].value->dotMul(*outArgs[0].value, *weights); outArgs[0].value->dotMul(*outArgs[0].value, *weights);
} }
return Argument::sumCosts(outArgs); return Argument::sum(outArgs);
} }
real getDiffAndPrint(real newCost1, real getDiffAndPrint(real newCost1,
@ -241,7 +241,7 @@ void testBatchState(LayerPtr testLayer,
std::vector<Argument> args; std::vector<Argument> args;
args.push_back(out); args.push_back(out);
EXPECT_EQ(0, Argument::sumCosts(args)) << "testBatchState failed"; EXPECT_EQ(0, Argument::sum(args)) << "testBatchState failed";
for (size_t seqId = 0; seqId < numSequences; ++seqId) { for (size_t seqId = 0; seqId < numSequences; ++seqId) {
start[seqId] += seqLens[seqId]; start[seqId] += seqLens[seqId];
} }
@ -672,7 +672,7 @@ void testLayerGradKernel(TestConfig testConf,
outArgs[0].value->dotMul(*testLayer->getOutput().value, *weights); outArgs[0].value->dotMul(*testLayer->getOutput().value, *weights);
} }
real cost = Argument::sumCosts(outArgs); real cost = Argument::sum(outArgs);
LOG(INFO) << " cost " << cost; LOG(INFO) << " cost " << cost;
EXPECT_FALSE(std::isnan(cost)); EXPECT_FALSE(std::isnan(cost));

@ -163,7 +163,7 @@ struct Argument {
: sequenceStartPositions->getData(false); : sequenceStartPositions->getData(false);
} }
static inline real sumCosts(const std::vector<Argument>& arguments) { static inline real sum(const std::vector<Argument>& arguments) {
real cost = 0; real cost = 0;
for (auto& arg : arguments) { for (auto& arg : arguments) {
if (arg.value) { if (arg.value) {

@ -208,7 +208,7 @@ real Tester::forwardOneBatch(const DataBatch& dataBatch,
return 0.0; // In this case, there is no meaning to calculate cost return 0.0; // In this case, there is no meaning to calculate cost
} }
return Argument::sumCosts(outArgs); return Argument::sum(outArgs);
} }
void Tester::testOnePassBatch(int passId) { void Tester::testOnePassBatch(int passId) {

@ -310,7 +310,7 @@ real Trainer::checkGradient() {
std::vector<Argument> outArgs; std::vector<Argument> outArgs;
trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC); trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
real cost = Argument::sumCosts(outArgs); real cost = Argument::sum(outArgs);
LOG(INFO) << "original cost=" << cost; LOG(INFO) << "original cost=" << cost;
trainerInternal_.getGradientMachine()->backward(); trainerInternal_.getGradientMachine()->backward();
@ -340,7 +340,7 @@ real Trainer::checkGradient() {
parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara); parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara);
parameter->setValueUpdated(); parameter->setValueUpdated();
trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC); trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
real newCost1 = Argument::sumCosts(outArgs); real newCost1 = Argument::sum(outArgs);
for (size_t i = 0; i < dim; ++i) { for (size_t i = 0; i < dim; ++i) {
newp[i] = oldp[i] - step * d[i]; newp[i] = oldp[i] - step * d[i];
@ -349,7 +349,7 @@ real Trainer::checkGradient() {
parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara); parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara);
parameter->setValueUpdated(); parameter->setValueUpdated();
trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC); trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
real newCost2 = Argument::sumCosts(outArgs); real newCost2 = Argument::sum(outArgs);
real trueDelta = 0.5 * (newCost1 - newCost2); real trueDelta = 0.5 * (newCost1 - newCost2);
real diff = (1e-20 + trueDelta) / (1e-20 + delta) - 1; real diff = (1e-20 + trueDelta) / (1e-20 + delta) - 1;
@ -575,7 +575,7 @@ real Trainer::calcGradient(const DataBatch& dataBatch,
trainerInternal_.getGradientMachine()->forwardBackward( trainerInternal_.getGradientMachine()->forwardBackward(
inArgs, &outArgs, PASS_TRAIN); inArgs, &outArgs, PASS_TRAIN);
real cost = Argument::sumCosts(outArgs); real cost = Argument::sum(outArgs);
offset = 0; offset = 0;
for (auto& para : parameters) { for (auto& para : parameters) {

@ -134,7 +134,7 @@ void TrainerInternal::trainOneBatch(int64_t batchId,
real cost = 0; real cost = 0;
{ {
REGISTER_TIMER("sumCost"); REGISTER_TIMER("sumCost");
cost = Argument::sumCosts(*outArgs); cost = Argument::sum(*outArgs);
} }
if (batchId % intconfig_->log_period == 0) { if (batchId % intconfig_->log_period == 0) {

Loading…
Cancel
Save