commit
330e9929ec
@ -0,0 +1,51 @@
|
|||||||
|
set -e
|
||||||
|
|
||||||
|
unset OMP_NUM_THREADS MKL_NUM_THREADS
|
||||||
|
export OMP_DYNAMIC="FALSE"
|
||||||
|
export KMP_AFFINITY="granularity=fine,compact,0,0"
|
||||||
|
|
||||||
|
function train() {
|
||||||
|
topology=$1
|
||||||
|
bs=$2
|
||||||
|
use_mkldnn=$3
|
||||||
|
if [ $3 == "True" ]; then
|
||||||
|
use_mkldnn=$3
|
||||||
|
thread=1
|
||||||
|
log="logs/${topology}-mkldnn-${bs}.log"
|
||||||
|
elif [ $3 == "False" ]; then
|
||||||
|
use_mkldnn=$3
|
||||||
|
thread=`nproc`
|
||||||
|
log="logs/${topology}-${thread}mklml-${bs}.log"
|
||||||
|
else
|
||||||
|
echo "Wrong input $3, use True or False."
|
||||||
|
fi
|
||||||
|
args="batch_size=${bs}"
|
||||||
|
config="${topology}.py"
|
||||||
|
paddle train --job=time \
|
||||||
|
--config=$config \
|
||||||
|
--use_mkldnn=$use_mkldnn \
|
||||||
|
--use_gpu=False \
|
||||||
|
--trainer_count=$thread \
|
||||||
|
--log_period=10 \
|
||||||
|
--test_period=100 \
|
||||||
|
--config_args=$args \
|
||||||
|
2>&1 | tee ${log}
|
||||||
|
}
|
||||||
|
|
||||||
|
if [ ! -d "train.list" ]; then
|
||||||
|
echo " " > train.list
|
||||||
|
fi
|
||||||
|
if [ ! -d "logs" ]; then
|
||||||
|
mkdir logs
|
||||||
|
fi
|
||||||
|
|
||||||
|
#========= mkldnn =========#
|
||||||
|
# vgg
|
||||||
|
train vgg 64 True
|
||||||
|
train vgg 128 True
|
||||||
|
train vgg 256 True
|
||||||
|
|
||||||
|
#========== mklml ===========#
|
||||||
|
train vgg 64 False
|
||||||
|
train vgg 128 False
|
||||||
|
train vgg 256 False
|
@ -0,0 +1,103 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
from paddle.trainer_config_helpers import *
|
||||||
|
|
||||||
|
height = 224
|
||||||
|
width = 224
|
||||||
|
num_class = 1000
|
||||||
|
batch_size = get_config_arg('batch_size', int, 64)
|
||||||
|
layer_num = get_config_arg('layer_num', int, 19)
|
||||||
|
|
||||||
|
args = {'height': height, 'width': width, 'color': True, 'num_class': num_class}
|
||||||
|
define_py_data_sources2(
|
||||||
|
"train.list", None, module="provider", obj="process", args=args)
|
||||||
|
|
||||||
|
settings(
|
||||||
|
batch_size=batch_size,
|
||||||
|
learning_rate=0.01 / batch_size,
|
||||||
|
learning_method=MomentumOptimizer(0.9),
|
||||||
|
regularization=L2Regularization(0.0005 * batch_size))
|
||||||
|
|
||||||
|
img = data_layer(name='image', size=height * width * 3)
|
||||||
|
|
||||||
|
|
||||||
|
def vgg_network(vgg_num=3):
|
||||||
|
tmp = img_conv_group(
|
||||||
|
input=img,
|
||||||
|
num_channels=3,
|
||||||
|
conv_padding=1,
|
||||||
|
conv_num_filter=[64, 64],
|
||||||
|
conv_filter_size=3,
|
||||||
|
conv_act=ReluActivation(),
|
||||||
|
pool_size=2,
|
||||||
|
pool_stride=2,
|
||||||
|
pool_type=MaxPooling())
|
||||||
|
|
||||||
|
tmp = img_conv_group(
|
||||||
|
input=tmp,
|
||||||
|
conv_num_filter=[128, 128],
|
||||||
|
conv_padding=1,
|
||||||
|
conv_filter_size=3,
|
||||||
|
conv_act=ReluActivation(),
|
||||||
|
pool_stride=2,
|
||||||
|
pool_type=MaxPooling(),
|
||||||
|
pool_size=2)
|
||||||
|
|
||||||
|
channels = []
|
||||||
|
for i in range(vgg_num):
|
||||||
|
channels.append(256)
|
||||||
|
tmp = img_conv_group(
|
||||||
|
input=tmp,
|
||||||
|
conv_num_filter=channels,
|
||||||
|
conv_padding=1,
|
||||||
|
conv_filter_size=3,
|
||||||
|
conv_act=ReluActivation(),
|
||||||
|
pool_stride=2,
|
||||||
|
pool_type=MaxPooling(),
|
||||||
|
pool_size=2)
|
||||||
|
channels = []
|
||||||
|
for i in range(vgg_num):
|
||||||
|
channels.append(512)
|
||||||
|
tmp = img_conv_group(
|
||||||
|
input=tmp,
|
||||||
|
conv_num_filter=channels,
|
||||||
|
conv_padding=1,
|
||||||
|
conv_filter_size=3,
|
||||||
|
conv_act=ReluActivation(),
|
||||||
|
pool_stride=2,
|
||||||
|
pool_type=MaxPooling(),
|
||||||
|
pool_size=2)
|
||||||
|
tmp = img_conv_group(
|
||||||
|
input=tmp,
|
||||||
|
conv_num_filter=channels,
|
||||||
|
conv_padding=1,
|
||||||
|
conv_filter_size=3,
|
||||||
|
conv_act=ReluActivation(),
|
||||||
|
pool_stride=2,
|
||||||
|
pool_type=MaxPooling(),
|
||||||
|
pool_size=2)
|
||||||
|
|
||||||
|
tmp = fc_layer(
|
||||||
|
input=tmp,
|
||||||
|
size=4096,
|
||||||
|
act=ReluActivation(),
|
||||||
|
layer_attr=ExtraAttr(drop_rate=0.5))
|
||||||
|
|
||||||
|
tmp = fc_layer(
|
||||||
|
input=tmp,
|
||||||
|
size=4096,
|
||||||
|
act=ReluActivation(),
|
||||||
|
layer_attr=ExtraAttr(drop_rate=0.5))
|
||||||
|
|
||||||
|
return fc_layer(input=tmp, size=num_class, act=SoftmaxActivation())
|
||||||
|
|
||||||
|
|
||||||
|
if layer_num == 16:
|
||||||
|
vgg = vgg_network(3)
|
||||||
|
elif layer_num == 19:
|
||||||
|
vgg = vgg_network(4)
|
||||||
|
else:
|
||||||
|
print("Wrong layer number.")
|
||||||
|
|
||||||
|
lab = data_layer('label', num_class)
|
||||||
|
loss = cross_entropy(input=vgg, label=lab)
|
||||||
|
outputs(loss)
|
@ -0,0 +1,63 @@
|
|||||||
|
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from paddle.trainer_config_helpers import *
|
||||||
|
|
||||||
|
################################### Data Configuration ###################################
|
||||||
|
TrainData(ProtoData(files = "trainer/tests/mnist.list"))
|
||||||
|
################################### Algorithm Configuration ###################################
|
||||||
|
settings(batch_size = 1000,
|
||||||
|
learning_method = MomentumOptimizer(momentum=0.5, sparse=False))
|
||||||
|
################################### Network Configuration ###################################
|
||||||
|
data = data_layer(name ="input", size=784)
|
||||||
|
|
||||||
|
tmp = img_conv_layer(input=data,
|
||||||
|
num_channels=1,
|
||||||
|
filter_size=3,
|
||||||
|
num_filters=32,
|
||||||
|
padding=1,
|
||||||
|
shared_biases=True,
|
||||||
|
act=ReluActivation())
|
||||||
|
|
||||||
|
tmp = img_pool_layer(input=tmp,
|
||||||
|
pool_size=3,
|
||||||
|
stride=2,
|
||||||
|
padding=1,
|
||||||
|
pool_type=AvgPooling())
|
||||||
|
|
||||||
|
tmp = img_conv_layer(input=tmp,
|
||||||
|
filter_size=3,
|
||||||
|
num_filters=64,
|
||||||
|
padding=1,
|
||||||
|
shared_biases=True,
|
||||||
|
act=ReluActivation())
|
||||||
|
|
||||||
|
tmp = img_pool_layer(input=tmp,
|
||||||
|
pool_size=3,
|
||||||
|
stride=2,
|
||||||
|
padding=1,
|
||||||
|
pool_type=MaxPooling())
|
||||||
|
|
||||||
|
tmp = fc_layer(input=tmp, size=64,
|
||||||
|
bias_attr=True,
|
||||||
|
act=ReluActivation())
|
||||||
|
|
||||||
|
output = fc_layer(input=tmp, size=10,
|
||||||
|
bias_attr=True,
|
||||||
|
act=SoftmaxActivation())
|
||||||
|
|
||||||
|
lbl = data_layer(name ="label", size=10)
|
||||||
|
|
||||||
|
cost = classification_cost(input=output, label=lbl)
|
||||||
|
outputs(cost)
|
Loading…
Reference in new issue