parent
7b5a9d75d9
commit
3334c279d0
@ -0,0 +1,137 @@
|
|||||||
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import paddle
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
import math
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
|
||||||
|
os.environ['CPU_NUM'] = '1'
|
||||||
|
|
||||||
|
|
||||||
|
def random_reader(sample_num):
|
||||||
|
def __impl__():
|
||||||
|
for _ in range(sample_num):
|
||||||
|
yield np.random.random(
|
||||||
|
size=[784]).astype('float32'), np.random.random_integers(
|
||||||
|
low=0, high=9, size=[1]).astype('int64')
|
||||||
|
|
||||||
|
return paddle.reader.cache(__impl__)
|
||||||
|
|
||||||
|
|
||||||
|
class TestCaseBase(unittest.TestCase):
|
||||||
|
def setUp(self):
|
||||||
|
self.batch_size = 32
|
||||||
|
self.epoch_num = 2
|
||||||
|
self.sample_num = 165
|
||||||
|
|
||||||
|
def generate_all_data(self, reader):
|
||||||
|
ret = []
|
||||||
|
for d in reader():
|
||||||
|
slots = [[], []]
|
||||||
|
for item in d:
|
||||||
|
slots[0].append(item[0])
|
||||||
|
slots[1].append(item[1])
|
||||||
|
slots = [np.array(slot) for slot in slots]
|
||||||
|
ret.append(slots)
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def run_main(self, reader, use_sample_generator, iterable, drop_last):
|
||||||
|
image = fluid.layers.data(name='image', dtype='float32', shape=[784])
|
||||||
|
label = fluid.layers.data(name='label', dtype='int64', shape=[1])
|
||||||
|
py_reader = fluid.io.PyReader(
|
||||||
|
feed_list=[image, label],
|
||||||
|
capacity=16,
|
||||||
|
iterable=iterable,
|
||||||
|
use_double_buffer=False)
|
||||||
|
|
||||||
|
batch_reader = paddle.batch(reader, self.batch_size, drop_last)
|
||||||
|
all_datas = self.generate_all_data(batch_reader)
|
||||||
|
|
||||||
|
if not use_sample_generator:
|
||||||
|
py_reader.decorate_paddle_reader(
|
||||||
|
batch_reader, places=fluid.cpu_places())
|
||||||
|
else:
|
||||||
|
py_reader.decorate_sample_generator(
|
||||||
|
reader, self.batch_size, drop_last, places=fluid.cpu_places())
|
||||||
|
|
||||||
|
if drop_last:
|
||||||
|
batch_num = int(self.sample_num / self.batch_size)
|
||||||
|
else:
|
||||||
|
batch_num = math.ceil(float(self.sample_num) / self.batch_size)
|
||||||
|
|
||||||
|
exe = fluid.Executor(fluid.CPUPlace())
|
||||||
|
exe.run(fluid.default_startup_program())
|
||||||
|
for _ in range(self.epoch_num):
|
||||||
|
if py_reader.iterable:
|
||||||
|
step = 0
|
||||||
|
for data in py_reader():
|
||||||
|
img, lbl = exe.run(feed=data, fetch_list=[image, label])
|
||||||
|
self.assertArrayEqual(img, all_datas[step][0])
|
||||||
|
self.assertArrayEqual(lbl, all_datas[step][1])
|
||||||
|
step += 1
|
||||||
|
self.assertEqual(step, len(all_datas))
|
||||||
|
else:
|
||||||
|
step = 0
|
||||||
|
try:
|
||||||
|
py_reader.start()
|
||||||
|
while True:
|
||||||
|
img, lbl = exe.run(fetch_list=[image, label])
|
||||||
|
self.assertArrayEqual(img, all_datas[step][0])
|
||||||
|
self.assertArrayEqual(lbl, all_datas[step][1])
|
||||||
|
step += 1
|
||||||
|
except fluid.core.EOFException:
|
||||||
|
py_reader.reset()
|
||||||
|
self.assertEqual(step, len(all_datas))
|
||||||
|
break
|
||||||
|
|
||||||
|
def assertArrayEqual(self, arr1, arr2):
|
||||||
|
self.assertEqual(arr1.shape, arr2.shape)
|
||||||
|
self.assertTrue((arr1 == arr2).all())
|
||||||
|
|
||||||
|
def test_main(self):
|
||||||
|
reader = random_reader(self.sample_num)
|
||||||
|
for use_sample_generator in [False, True]:
|
||||||
|
for iterable in [False, True]:
|
||||||
|
for drop_last in [False, True]:
|
||||||
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
||||||
|
self.run_main(reader, use_sample_generator, iterable,
|
||||||
|
drop_last)
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase1(TestCaseBase):
|
||||||
|
def setUp(self):
|
||||||
|
self.batch_size = 32
|
||||||
|
self.epoch_num = 10
|
||||||
|
self.sample_num = 160
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase2(TestCaseBase):
|
||||||
|
def setUp(self):
|
||||||
|
self.batch_size = 32
|
||||||
|
self.epoch_num = 2
|
||||||
|
self.sample_num = 200
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase3(TestCaseBase):
|
||||||
|
def setUp(self):
|
||||||
|
self.batch_size = 32
|
||||||
|
self.epoch_num = 2
|
||||||
|
self.sample_num = 159
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue