commit
341d1880ee
@ -0,0 +1,45 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/mean_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class MeanOp : public OperatorWithKernel {
|
||||
protected:
|
||||
void InferShape(const InferShapeContext &ctx) const override {
|
||||
PADDLE_ENFORCE(ctx.InputSize() == 1, "Input size of AddOp must be one");
|
||||
PADDLE_ENFORCE(ctx.OutputSize() == 1, "Output size of AddOp must be one");
|
||||
PADDLE_ENFORCE(ctx.InputVar(0) != nullptr && ctx.OutputVar(0) != nullptr,
|
||||
"Input/Output of MeanOp must be initialized.");
|
||||
ctx.Output<Tensor>(0)->Resize(framework::make_ddim({1}));
|
||||
}
|
||||
};
|
||||
|
||||
class MeanOpMaker : public OpProtoAndCheckerMaker {
|
||||
public:
|
||||
MeanOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "The input of mean op");
|
||||
AddOutput("Out", "The output of mean op");
|
||||
AddComment("Mean Operator");
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_OP(mean, ops::MeanOp, ops::MeanOpMaker);
|
||||
REGISTER_OP_CPU_KERNEL(mean, ops::MeanKernel<ops::CPUPlace, float>);
|
@ -0,0 +1,5 @@
|
||||
#define EIGEN_USE_GPU
|
||||
|
||||
#include "paddle/operators/mean_op.h"
|
||||
|
||||
REGISTER_OP_GPU_KERNEL(mean, ops::MeanKernel<ops::GPUPlace, float>);
|
@ -0,0 +1,36 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/operators/type_alias.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename Place, typename T>
|
||||
class MeanKernel : public OpKernel {
|
||||
public:
|
||||
void Compute(const ExecutionContext& context) const override {
|
||||
auto input = context.Input<Tensor>(0);
|
||||
auto output = context.Output<Tensor>(0);
|
||||
|
||||
output->mutable_data<T>(context.GetPlace());
|
||||
|
||||
EigenScalar<T>::From(*output).device(*(context.GetEigenDevice<Place>())) =
|
||||
EigenVector<T>::Flatten(*input).mean();
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,25 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <paddle/framework/op_registry.h>
|
||||
|
||||
USE_OP(mean);
|
||||
|
||||
TEST(MeanOp, GetOpProto) {
|
||||
auto& protos = paddle::framework::OpRegistry::protos();
|
||||
auto it = protos.find("mean");
|
||||
ASSERT_NE(it, protos.end());
|
||||
}
|
@ -1,2 +1,9 @@
|
||||
cc_library(paddle_pybind SHARED SRCS pybind.cc DEPS pybind python
|
||||
add_op fc_op sgd_op cross_entropy_op recurrent_network_op)
|
||||
cc_library(paddle_pybind SHARED
|
||||
SRCS pybind.cc
|
||||
DEPS pybind python
|
||||
fc_op
|
||||
sgd_op
|
||||
add_op
|
||||
mean_op
|
||||
cross_entropy_op
|
||||
recurrent_network_op)
|
||||
|
@ -0,0 +1,16 @@
|
||||
import unittest
|
||||
from op_test_util import OpTestMeta
|
||||
import numpy as np
|
||||
|
||||
|
||||
class TestMeanOp(unittest.TestCase):
|
||||
__metaclass__ = OpTestMeta
|
||||
|
||||
def setUp(self):
|
||||
self.type = "mean"
|
||||
self.X = np.random.random((32, 784)).astype("float32")
|
||||
self.Out = np.mean(self.X)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue