|
|
@ -14,6 +14,7 @@ limitations under the License. */
|
|
|
|
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <utility>
|
|
|
|
#include <vector>
|
|
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
#include "paddle/fluid/operators/strided_memcpy.h"
|
|
|
|
#include "paddle/fluid/operators/strided_memcpy.h"
|
|
|
@ -34,12 +35,46 @@ class ConcatKernel : public framework::OpKernel<T> {
|
|
|
|
auto out_stride = framework::stride_numel(out->dims());
|
|
|
|
auto out_stride = framework::stride_numel(out->dims());
|
|
|
|
|
|
|
|
|
|
|
|
size_t output_offset = 0;
|
|
|
|
size_t output_offset = 0;
|
|
|
|
for (auto* in : ins) {
|
|
|
|
|
|
|
|
auto in_stride = framework::stride_numel(in->dims());
|
|
|
|
// If axis >=1, copy to out immediately need to call many times
|
|
|
|
StridedNumelCopyWithAxis<T>(ctx.device_context(), axis,
|
|
|
|
// of cuda memcpy. Copy the input to cpu and do the stride copy,
|
|
|
|
out->data<T>() + output_offset, out_stride,
|
|
|
|
// then copy to gpu output.
|
|
|
|
in->data<T>(), in_stride, in_stride[axis]);
|
|
|
|
|
|
|
|
output_offset += in_stride[axis];
|
|
|
|
if (platform::is_gpu_place(place) && axis >= 1) {
|
|
|
|
|
|
|
|
platform::CPUPlace copy_place;
|
|
|
|
|
|
|
|
auto& cpu_ctx = *platform::DeviceContextPool::Instance().Get(copy_place);
|
|
|
|
|
|
|
|
framework::Tensor cpu_out;
|
|
|
|
|
|
|
|
cpu_out.Resize(out->dims());
|
|
|
|
|
|
|
|
cpu_out.mutable_data<T>(copy_place);
|
|
|
|
|
|
|
|
auto& dev_ctx = ctx.device_context();
|
|
|
|
|
|
|
|
std::vector<std::unique_ptr<framework::Tensor>> cpu_ins;
|
|
|
|
|
|
|
|
for (auto* in : ins) {
|
|
|
|
|
|
|
|
std::unique_ptr<framework::Tensor> cpu_in(new framework::Tensor);
|
|
|
|
|
|
|
|
framework::TensorCopy(*in, copy_place, dev_ctx, cpu_in.get());
|
|
|
|
|
|
|
|
cpu_ins.emplace_back(std::move(cpu_in));
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO(dzhwinter): overlap copy and compute stream
|
|
|
|
|
|
|
|
// https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/
|
|
|
|
|
|
|
|
dev_ctx.Wait();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (auto& in : cpu_ins) {
|
|
|
|
|
|
|
|
auto& cpu_in = *in.get();
|
|
|
|
|
|
|
|
auto in_stride = framework::stride_numel(cpu_in.dims());
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
StridedNumelCopyWithAxis<T>(
|
|
|
|
|
|
|
|
cpu_ctx, axis, cpu_out.data<T>() + output_offset, out_stride,
|
|
|
|
|
|
|
|
cpu_in.data<T>(), in_stride, in_stride[axis]);
|
|
|
|
|
|
|
|
output_offset += in_stride[axis];
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
framework::TensorCopy(cpu_out, place, dev_ctx, out);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
for (auto* in : ins) {
|
|
|
|
|
|
|
|
auto in_stride = framework::stride_numel(in->dims());
|
|
|
|
|
|
|
|
StridedNumelCopyWithAxis<T>(ctx.device_context(), axis,
|
|
|
|
|
|
|
|
out->data<T>() + output_offset, out_stride,
|
|
|
|
|
|
|
|
in->data<T>(), in_stride, in_stride[axis]);
|
|
|
|
|
|
|
|
output_offset += in_stride[axis];
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
};
|
|
|
|