parent
2811ea4440
commit
34a8084328
@ -0,0 +1,122 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/fc_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
void FCOp::InferShape(framework::InferShapeContext* ctx) const {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Input"),
|
||||
"X(Input) of Fully Connected should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||
"Out(Output) of Fully Connected should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("W"),
|
||||
"W(Input) of Fully Connected should not be null.");
|
||||
|
||||
auto in_dims = ctx->GetInputDim("Input");
|
||||
auto w_dims = ctx->GetInputDim("W");
|
||||
std::vector<int64_t> output_shape({in_dims[0], w_dims[1]});
|
||||
|
||||
PADDLE_ENFORCE(in_dims.size() == 4,
|
||||
"Fully Connected input should be 4-D tensor.");
|
||||
|
||||
PADDLE_ENFORCE(w_dims.size() == 2,
|
||||
"Fully Connected input should be 2-D tensor.");
|
||||
|
||||
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
|
||||
ctx->ShareLoD("Input", "Out");
|
||||
}
|
||||
|
||||
framework::OpKernelType FCOp::GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const {
|
||||
framework::LibraryType library{framework::LibraryType::kMKLDNN};
|
||||
framework::DataLayout layout{framework::DataLayout::kAnyLayout};
|
||||
|
||||
return framework::OpKernelType(
|
||||
framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
|
||||
layout, library);
|
||||
}
|
||||
|
||||
void FCOpGrad::InferShape(framework::InferShapeContext* ctx) const {
|
||||
auto in_dims = ctx->GetInputDim("Input");
|
||||
auto w_dims = ctx->GetInputDim("W");
|
||||
|
||||
if (ctx->HasOutput(framework::GradVarName("Input"))) {
|
||||
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
|
||||
}
|
||||
if (ctx->HasOutput(framework::GradVarName("W"))) {
|
||||
ctx->SetOutputDim(framework::GradVarName("W"), w_dims);
|
||||
}
|
||||
}
|
||||
|
||||
framework::OpKernelType FCOpGrad::GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const {
|
||||
framework::LibraryType library{framework::LibraryType::kMKLDNN};
|
||||
framework::DataLayout layout{framework::DataLayout::kAnyLayout};
|
||||
|
||||
return framework::OpKernelType(
|
||||
framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
|
||||
layout, library);
|
||||
}
|
||||
|
||||
FCOpMaker::FCOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput(
|
||||
"Input",
|
||||
"(Tensor) The input tensor of fully connected operator. "
|
||||
"The format of input tensor is NCHW, where N is batch size, C is the "
|
||||
"number of channels, H is the height of the feature, "
|
||||
"and W is the width of the feature.");
|
||||
AddInput("W", "(Tensor), The second input tensor of fc op.");
|
||||
AddOutput("Out",
|
||||
"(Tensor) The output tensor of fully connected operator. "
|
||||
"The format of output tensor is also NCHW, "
|
||||
"where N is batch size, C is the number of channels, "
|
||||
"H is the height of the feature, "
|
||||
"and W is the width of the feature.");
|
||||
AddAttr<bool>("use_mkldnn",
|
||||
"(bool, default false) Only used in mkldnn kernel")
|
||||
.SetDefault(false);
|
||||
AddAttr<bool>("bias_attr", "(bool, default false) Only used in mkldnn kernel")
|
||||
.SetDefault(false);
|
||||
AddComment(R"DOC(
|
||||
Fully Connected Operator.
|
||||
|
||||
The fully connected operation calculates the output based on the input, weights and bias attribute.
|
||||
The size of each dimension of the parameters checked in the infer-shape.
|
||||
Input(Input) is NCHW or NC format. Where N is batch size, C is the number of channels,
|
||||
H is the height of the feature, and W is the width of the feature.
|
||||
Weights(W) is OIHW or OI format. Where H is the height of the feature, W is the width of the feature,
|
||||
O is the height of output, and I is the number of channels.
|
||||
Output(Out) is NC format. Where N is batch size, and C is the number of channels.
|
||||
The matrix of bias is generated by the mkldnn framework, when the bias_attr is True.
|
||||
Additional parametrs are use_mkldnn and bias_attr.
|
||||
The input(X) size and output(Out) size may be diffrent.
|
||||
|
||||
Example:
|
||||
Input:
|
||||
Input shape: $(N, C_{in}, H_{in}, W_{in})$
|
||||
Weight shape: $(O_{out}, I_{in}, H_{in}, W_{in})$
|
||||
Bias shape: $(O_{out})$
|
||||
Output:
|
||||
Output shape: $(N, C_{out})$
|
||||
)DOC");
|
||||
}
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_OP(fc, paddle::operators::FCOp, paddle::operators::FCOpMaker, fc_grad,
|
||||
paddle::operators::FCOpGrad);
|
Loading…
Reference in new issue