parent
0ef86cbd2e
commit
350b268b7c
@ -0,0 +1,120 @@
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import layer
|
||||
import activation as act
|
||||
from config_base import Layer
|
||||
from paddle.trainer_config_helpers.attrs import is_compatible_with
|
||||
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
|
||||
|
||||
__all__ = []
|
||||
|
||||
|
||||
def __register_unary_math_op__(op_name, act):
|
||||
def op(input, name=None):
|
||||
return layer.mixed(
|
||||
input=[layer.identity_projection(input=input)], name=name, act=act)
|
||||
|
||||
op = wrap_name_default(op_name)(op)
|
||||
op.__doc__ = type(act).__doc__
|
||||
globals()[op_name] = op
|
||||
__all__.append(op_name)
|
||||
|
||||
|
||||
__register_unary_math_op__('exp', act.Exp())
|
||||
__register_unary_math_op__('log', act.Log())
|
||||
__register_unary_math_op__('abs', act.Abs())
|
||||
__register_unary_math_op__('sigmoid', act.Sigmoid())
|
||||
__register_unary_math_op__('tanh', act.Tanh())
|
||||
__register_unary_math_op__('square', act.Square())
|
||||
__register_unary_math_op__('relu', act.Relu())
|
||||
__register_unary_math_op__('sqrt', act.Sqrt())
|
||||
__register_unary_math_op__('reciprocal', act.Reciprocal())
|
||||
__register_unary_math_op__('softmax', act.Softmax())
|
||||
|
||||
|
||||
def __add__(layeroutput, other):
|
||||
if is_compatible_with(other, float):
|
||||
return layer.slope_intercept(input=layeroutput, intercept=other)
|
||||
if not isinstance(other, Layer):
|
||||
raise TypeError("Layer can only be added with"
|
||||
" another Layer or a number")
|
||||
if layeroutput.size == other.size:
|
||||
return layer.mixed(input=[
|
||||
layer.identity_projection(input=layeroutput),
|
||||
layer.identity_projection(input=other)
|
||||
])
|
||||
if other.size != 1 and layeroutput.size != 1:
|
||||
raise TypeError("Two Layer can be added only if they have equal size"
|
||||
" or one of their sizes is 1. sizes are %s and %s" %
|
||||
(layeroutput.size, other.size))
|
||||
elif layeroutput.size == 1:
|
||||
tmp = layeroutput
|
||||
layeroutput = other
|
||||
other = tmp
|
||||
other = layer.repeat(other, layeroutput.size)
|
||||
return layer.mixed(input=[
|
||||
layer.identity_projection(input=layeroutput),
|
||||
layer.identity_projection(input=other)
|
||||
])
|
||||
|
||||
|
||||
Layer.__radd__ = __add__
|
||||
Layer.__add__ = __add__
|
||||
|
||||
|
||||
def __neg__(layeroutput):
|
||||
return layer.slope_intercept(input=layeroutput, slope=-1.0)
|
||||
|
||||
|
||||
Layer.__neg__ = __neg__
|
||||
|
||||
|
||||
def __sub__(layeroutput, other):
|
||||
if is_compatible_with(other, float):
|
||||
return layer.slope_intercept(input=layeroutput, intercept=other)
|
||||
if not isinstance(other, Layer):
|
||||
raise TypeError("Layer can only be subtracted with"
|
||||
" another Layeroutput or a number")
|
||||
return __add__(layeroutput, -other)
|
||||
|
||||
|
||||
Layer.__sub__ = __sub__
|
||||
|
||||
|
||||
def __rsub__(layeroutput, other):
|
||||
neg = layer.slope_intercept(input=layeroutput, slope=-1.0)
|
||||
return __add__(neg, other)
|
||||
|
||||
|
||||
Layer.__rsub__ = __rsub__
|
||||
|
||||
|
||||
def __mul__(layeroutput, other):
|
||||
if is_compatible_with(other, float):
|
||||
return layer.slope_intercept(input=layeroutput, slope=other)
|
||||
if not isinstance(other, Layer):
|
||||
raise TypeError("Layer can only be multiplied with"
|
||||
" another Layer or a number")
|
||||
elif layeroutput.size == 1:
|
||||
return layer.scaling(input=other, weight=layeroutput)
|
||||
elif other.size == 1:
|
||||
return layer.scaling(input=layeroutput, weight=other)
|
||||
else:
|
||||
raise TypeError("At least one of the operand of '*' must be a number"
|
||||
" or a Layer with size=1")
|
||||
|
||||
|
||||
Layer.__mul__ = __mul__
|
||||
Layer.__rmul__ = __mul__
|
@ -1,2 +1,2 @@
|
||||
add_python_test(test_v2_api test_data_feeder.py test_parameters.py
|
||||
add_python_test(test_v2_api test_data_feeder.py test_op.py test_parameters.py
|
||||
test_layer.py test_rnn_layer.py test_topology.py test_image.py)
|
||||
|
@ -0,0 +1,50 @@
|
||||
# Copyright PaddlePaddle contributors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import unittest
|
||||
|
||||
import paddle.v2.data_type as data_type
|
||||
import paddle.v2.layer as layer
|
||||
import paddle.v2.op as op
|
||||
|
||||
|
||||
class OpTest(unittest.TestCase):
|
||||
def test_op(self):
|
||||
x = layer.data(name='data', type=data_type.dense_vector(128))
|
||||
x = op.exp(x)
|
||||
x = op.sqrt(x)
|
||||
x = op.reciprocal(x)
|
||||
x = op.log(x)
|
||||
x = op.abs(x)
|
||||
x = op.sigmoid(x)
|
||||
x = op.tanh(x)
|
||||
x = op.square(x)
|
||||
x = op.relu(x)
|
||||
y = 1 + x
|
||||
y = y + 1
|
||||
y = x + y
|
||||
y = y - x
|
||||
y = y - 2
|
||||
y = 2 - y
|
||||
y = 2 * y
|
||||
y = y * 3
|
||||
z = layer.data(name='data_2', type=data_type.dense_vector(1))
|
||||
y = y * z
|
||||
y = z * y
|
||||
y = y + z
|
||||
y = z + y
|
||||
print layer.parse_network(y)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue